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Codes of split type

Maro KIMIZUKA' and Ryuji SASAKI**"

Abstract

Generalizing a way to construct Golay codes, codes of split type are defined. A lot of interesting codes, for

example, extremal codes of length # < 40 such as Golay codes and binary doubly even self-dual codes [48, 24, 12],

[72, 36, w] with w = 12, are represented as codes of split type.

Key Words : linear code, Golay code, Mathieu group

1. Introduction

The MOG array was discovered by R.T. Curtis [4],
and it is recognized to be one of the greatest object for
investigations involving the Mathieu group M. In his
paper [2] Ch.11, J.H.Conway gives a nice description for
constructing the Golay codes. His works inspired us to
generalizing Golay codes. As such a code, we introduce
a code of split type, which is defined by the following

way, i.e., let F'/F be an extension of finite fields, and let
IZFn—>Fk><n, L . Fkxn_> (F/)n

be linear maps such that L has a set-theoretic section 7.
Here F* " is the space of k£ X n matrices with coefficient
in F. For subsets B C F" and D C (F")", the linear code
C(B, D) = {I(B), T(D)) in F**" is called a code of split
type. The binary and ternary Golay codes are in fact
codes of split type. Fairly many codes are represented as
codes of split type. We shall show some of them as
examples.

The contents of this article is as follows. After we
define codes of split type in §2, we shall discuss three
kinds of codes of split type. A fundamental case is
discussed in §3, and in the following §4 we shall unify
the arguments developed in [6] Ch.5 and Ch.7, as a
result, we shall obtain generalizations of Golay codes.
Such a code has a criterion which characterizes codewords.
In the case of the binary Golay code, such a criterion is
called the Miracle Octad Generators. For each n = 8/
with [ < 5, a binary extremal singly or doubly even and

self-dual code with length 7 is represented as a code of
split type.

In § 5 generalizations C3(B, D) of Turyn’s construction
(cf. [2], Ch.11) will be given as a kind of codes of split
type. Here we emphasize that our code C3(B, D) is a
slight generalization of a cubic self-dual binary code
given in [1]. In fact, a cubic code is defined for an IF,
-linear code D, however our C3(B, D) is definable for an
additive code D. We shall represent several binary or
quaternary self-dual codes, for example, binary doubly-
even self-dual codes [48, 24, 12] and [72, 36, w] with w >
12 as codes of split type.

A code C(B, D) of split type has automorphisms
induced by those of B and D. We shall discuss such
automorphisms of codes of split type in §6. Lastly we
shall touch M-matrices of codes of split type. We hope
that a study of automorphisms and M-matrices of codes
of split type contribute to further investigation, such as
showing the uniqueness of the code [48, 24, 12], of codes
of split type. T. Kondo ([12]) introduces M-matrices of
the Steiner System S(5, 8, 24) and uses them as a base
for a story of Mathieu groups. In [9] and [11], we define
M-matrices of the ternary Golay code and give
applications of them. For further applications of
M-matrices, we refer to [13], [8] and [10].

2. Codes of split type

Let p be a prime number. We denote by IF, the finite
field with ¢ = p” elements. The inner product of vectors
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u=(uy, -, u,),v=_(vy,"-,0, € (F,) is defined by
(uw,v) =D u;v9,
i=1

where 0 is the identity of IF, or the involution in Aut (FF,)
if it exists. For a vector u € F', the weight wt (u) of u is
the number of non-zero components of u. A
k-dimensional subspace of (IF,)" is called an [#, k] code
over IF,. For an [, k] code C, its dual C* = {u € (F,)" |
(u,v) =0(VveC)}isan[n, n — k] code. If Cc C*, C
is said to be self-orthogonal, and if C = C*, then C is said
to be self-dual. For an IF ,-linear subspace C of F, , C is
said to be even (resp. singly-even, doubly-even) if {wt(u) |
u € C} C 2Z (resp. C 27Z and ¢ 47, C 47). The
minimum of the set {wt(u) | 0 # u € C} is called the
minimal distance of C. An [n, k] code with minimal
distance d is called an [#, &, d] code.

Now we shall define a code of split type. Let p be a
prime number, and put ¢ = p’, ¢’ = " with f|f’. For

)a><b

positive integers @ and b, we denote by (F, the space

of @ X b matrices with coefficients in I, We fix a subset
K= {a)l, cee, a)k} of the field I, satisfying

k

€] w;=0,andF, =T, (K).

1

1

Let
I:(F)""'—TF,

be an F;-linear map defined by
k
[(E(xy, -, x) = Z w;x;.
i=1

Then the direct sum
L=®}_,1:(F)""— (F,)"
is an [F, — linear map. Let
T:(F,)"— (F)"™"

be a set-theoretic section of L.
Let

lI}Fq‘) (]Fq)kxn, [(x) = t(xs e 9x)a
and let

IZQ');:':][I (Fq)n*) (]Fq)kxn-

Then, by (1), we have Lo I = 0.

If we define an F -linear map s : (F,)**' — FF, by
k
st(ay -+, 2,) = lei,
then s o t(x) = kx for x € F,. We denote by S the direct
sum®”s :
S=@":(F,)""— (F,)".

For subsets B c (F,)" and D c (F,)", we define the
linear code C(B, D; I, T) by

C(B,D; I, T) ={I(B), T(D))r,C (F,)*"".

We call C(B, D; I, T) the code of split type associated
with B, D, Iand T.
Collecting our notation together, we have the

following:
1 L
2 F)" = F)" = (F,)",
U S U T U
B C(B,D;I,T) D
Sol=keidw), LoT=idw,), Lol=0.

Here we give an interesting example of a code of

split type.

Example 1 ([2] Ch.12) Let P and L be the point code and
the line code, respectively. They are isomorphic to the
Hamming [8, 4, 4] code. Put

K=Fi={w, =1, 0,=0, 0;=n" =}
Defines: Fy,— (IF2)* ! by

s(aw +b)=t((a+0b),b,a),a,belF,.

Then S = ®°%_, s is a section of the linear map L : (IF‘Z)?’X8

— (F)*. PuB=P,D=LQ®F,.
Then C(B, D; I, T) is the binary Golay code. This is

so-called Turyn’s construction.
3. Casel
According to choices of a set K or a section 7, we

obtain various codes of split type. In this section, we

shall discuss in the following situation: Let the notation

— 2 —



Codes of split type

be as in §2, if the contrary is not stated. We take the

field F, as aset K= {@; =0, @y, * * *, @,}; hence k :=

|K|=4q".

Define a section of the linear map L by the direct sum
=@t (F,)"— (F)",

of

t:Fq' - (Fq)kX1s w;— (a)i)

where (@;) is the column vector whose i-th component

is 1 and the others are 0. As usual, let

{e1=(15090’...’0)’e2=(0’1309...90)5'..9
en=(0,0,'°',0,1)}

be the standard basis of the vector space (IF,)".

By the definitions, we have the following:

Lemmal [.(I(e;),I(e;)) =|F,|5:/=0,
2.1fd e (F,)" then (I(e;), T1(d)) =1,
3.(Ty(d), Ti(d")) = n — wt(d — d') for vectors d and
d of (F,)".

First we discuss in the following situation:

q=2,9' =4, K=F,={0, 1, w, @},
B=(ei—ey, " *,e;—e,).

For an [F,-linear subspace D c Fy, let Cy(D) = C(B, D;
L, T1) be a code of split type.
Lemma 2 Assume that D is even. Then, for any vectors d
and d’ in D, we have

Ti(d) + T,(d") + T,(0) + T:(d + d') € I(B).
If{dl, cee dm} is a basis of D over ¥y, then the set

X= {I(el —ey),  ,I(e;—e,), Tl(o), Tl(dl)s ey,

is a basis of C1(D) over Fy. In particular, we have
dimy,C1(D) = dimg, (D) + n.

Proof. We denote by I, the set {1, 2,00, n} For

d=(dy,dy-"",d,), d=(d";,d"s---,d",),

we define subsets @, b, ¢ and ¢’ of I, by
a:={iel,|0#d,#d'; # 0},

b:={iel,|d;=d’; #0},

c:={iel,|d;#0,d; =0},

¢ ={iel,|d;=0,d;#0}.
Since D is even, it follows that |a| + |b| + |c| and |a| +
|b| + |c¢’| are even; hence |¢| + |¢’| is even. Here, |a] is
the cardinality of the set a, etc. On the other hand,
[supp(d + d')| = |a]| + |c| + |¢’| is even. Thus |a| is
even. Ifi € a, then {d;, d’;, d; + d';} = {1, @, @} and the

i-th column of
A:=Ti(d)+ Ti«(d)+ T,00)+ T, (d+d)

is (1,1, 1, 1). If i ¢ a, then one of the following three

cases holds:

l.d,‘:dli, 2.d,1‘:0, 3d1:0

Therefore the i-th column of A is £(0, 0, 0, 0). Hence

A=311(e)e€l(B).
Thus we obtain the first part of the Lemma. In
particular, the set X generates the code C1(D).
Now we shall show that X is linearly independent

over IF, . Set b; = e; — e;. Suppose that

Zﬁﬂm»+§&Tm»=0<m=0»

i= j=
with B;, 6, € F,. Since Lo Ty = idw,)» and Lo [ = 0,

applying the linear map L for this equation, we get

6]‘(:1]': 0.

1

m

J

Therefore §; = - -+ = §,, = 0. Thus we have
>, Bil(b) +8,7(0) = 0.
i=2

If 5, # 0 then we have T7(0) = I(b) for some b € B.
By the definition of I, this is absurd; hence 8, = 0.
Therefore we have

izﬂi I(bi) =0.

Since [ is injective, we get B8, =+ -+ = 3, = 0. Thus X is
linearly independent over [F, ; hence we have the last
assertion. ]
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Proposition 3 Let ¢ = 2 and q’ = 4 and assume that n > 4
and n is even. Let D be an n-dimensional TFo-subspace of
F’y such that each element in D is even weight. If n = 0
(resp.2) (mod 4), then the code C1(D) is a binary, self-dual
and doubly (resp. singly) even [4n, 2n, d] code with d = 4.
Further if n = 8 (resp. n = 6) and the minimal distance of
D is greater than or equal to 4, then C1(D) is a [4n, 2n, 8]
(resp.[24, 12, 6])-code.

Proof. By Lemma 1 and Lemma 2, Cy(D) is a
2n-dimensional self-dual code. Any codeword of Cy(D)

is written in the following forms:

I(b), T(d), I(b) + Ty(d), I(b)+ T:(0) + Ty(d)
(beB,deD).

Then we have

wt(I(b)) = 4wt (b), wt(T1(d)) = n,
wt(I(b) + Ti(d)) = n — wt(b) + 3wt (b)
=n + 2wt(b).

Moreover, wt(I(b) + T1(0) + T1(d)) is equal to

4|supp (b) — supp(d)| + 2|supp(b) N supp(d)]
+ 2|supp(d) — supp(b)|.

Since D is even, it follows that this is a multiple of 4. By

these calculations, we get our assertions. ]

Example 2 (Binary singly-even self-dual [24, 12, 6] code)
Let D = H be the Hexacode,i.e.,

H= {(a, bye, (1), p(w), ¢ (@)|a,b,ceF,,
¢ (x) = ax’ + bx + ¢}  (F,)".

Then C(H) is a binary, singly even and self-dual [24, 12,
6] code with weight distribution.:

weight 0 6 8 10 12 14 16 18 24
# 1 64 375 960 1296 960 375 64 1

Example 3 (Binary doubly-even self-dual [32, 16, §]
code) Let Hg be the Hamming code and D = Hg ® [F'4.
Then C((D) is a binary, doubly even and self-dual [32, 16,
8] code with weight distribution:

weight 0 8 12 16 20 24 32
# 1 620 13888 36518 13888 620 1

Example 4 (Binary singly-even self-dual [40, 20, 8] code)
Let D be an even [10, 5, 4] code over IF . For example, if
D is generated by

d; = 1111000000, d,= 0011110000,
d; = 0000111100, d,= 0000001111,
ds = 1212121212

where 2 = @. Then, C1(D) is a binary singly even self-dual
[40, 20, 8] code with weight distribution:

weight 0 8 10 12 14 16 18
# 1 285 1024 11040 46080 117090 215040

20 22 24 26 28 30 32 40
267456 215040 117090 46080 11040 1024 285 1

Secondly, we are in the following situation:
q=q =3, B=(e1—e;," ", e1—e,).

and I, L, T are the same as before.
By the same way as the above, we have the

following, so we shall omit their proofs:

Lemma 4 Assume that each codeword d of D satisfies
wt(d) = 0 (mod 3). Then, for any d and d’ from D, we
have
T:(d) + Ti(=d) + T1(0), Tr(d) + Ty(d’) + T1(0) +
T(d+d’") el(B).
In particular, if {dy, -+, d,,} is a basis of D, then the set
X = {I(el - ez)a Y I(el - en)’ Tl(o)a Tl(dl)7 ttt,
Ty(d,,)} is a basis of the code C1(D) over F5;

dlmF;Cl(D) = dlI’l’l]FK (D) + n.

Proposition 5 Let ¢ = q¢' = 3 and assume that n = 0 (mod
6). Let D be an nl2-dimensional code in (IF5)" satisfying

wt(d) = 0 (mod 3) for any d € D. Then C1(D) is a [3n,
3n/2, 6]-code.

4. Casell

In this section we shall unify the arguments developed
in [6] Ch.5 and Ch.7 and give a generalization of Golay
codes. Our situation is the same as (2), and assume

(A) q=2,9'=k=4;n:even
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or
B) gq=q'=k=3;n= —2(mod 6).
SetF,={w, =0, 0, =1, 05 = 0, 0, = ®°} and F3 =
{w,=0,0,=1,0;=—1}.
By the definition, L(I(e;)) = 0; hence the map

Ty: (Fy)"— (F,) "
defined by Ty(d) = T1(d) + I(e;) is also a section of the
linear map L : (F,)* " — (F,)".

For a linear code B in (F,)" and an [ linear
subspace D of (F,)”", we denote by Cy(B, D) the code

C(B, D; I, T) of split type. The following lemmas are
proved by the same way as in the previous section:

Lemma 6

(To(d), To(d) =2+ n — wt(d — d)
(d,d"e(Fy)")-

Lemma 7 If {bl, s b,} is a linearly independent subset
of Band{d,, - - -, d,} is a linearly independent subset of
D over F,, then the set

{I(bl), e, I(bz), T2(d1), T, Tz(dm), Tz(o)}

is linearly independent over ¥ ,. In particular,

dimg,Co(B, D) = dimg, (B) + dimg, (D) + 1.

Theorem 8 Assume that the following conditions are
satisfied:®'_ 11

(Cl) X i-1b;=0foreveryb = (by,-*-,b,) €B,

(C2) wt(d) = n + 2 (mod p) for every d € D.

Then we have
3) dimg, (B) + dimg, (D)+ 1 < nk/2.

If the equality (3) holds, for example dimg, (B) = n — 1
and

@) dims, (D) = @ ,
then the code Cy(B, D) is self-dual and

dims, (Cy(B, D)) = nk/2 = dimg, (B) + dimg, (D) + 1.
In this case, if {b;|1 < i < dimg, (B)} is a basis of B and
{d]-| 1<;< dimFa (D)} is a basis of D, then the set {I(b,-),

T5(d)), T»(0)|1 < i < dimg, (B), 1 <j < dimg, (D)}forms
a basis of Co(B, D).

Proof. We denote Cyo(B, D) by C. By Lemma 6 and (C1),
(C2), we have

1. (I(b), I(b)) =0 (Vb,b' e (F,)"),

2.(I(b), To(d)) = 23— 1b;=0(VbeB,de (F,)"),

3.(Tyd), Tod) =n+2—-wt(d—-d) =0 (vVd, d
e(F,)").

Hence we have C c C*. By Lemma 7, we have

dimg, (B) + dimg, (D) + 1
< dimg, (C)
< dimg, (C")
< nk — (dimg, (B) + dimg, (D) + 1).

S

Thus we have
dimﬂ?q (B) + dlm]Fq (D) + 1 < nk/2.
If the equality holds here, by (5), we have

C = C*, dimg, (C) = kn/2.

Now we fix a code
B={(e,—e;|2<i<mn).

Then B satisfies the condition (C1). In the case (A), let
D be an even FFy-linear subspace of (IF,)" of dimension #.
On the other hand, in the case (B), let D be an [Fs-linear
code in (IF'3)”, with dimr, (D) = #/2, such that {wt(d) | d
IS D} C 37. Then the code D satisfies the condition (C2)
and (4). We denote by Cy(D) the code C(B, D; I, T,) of
split type. By Theorem 8, C(D) is self-dual and

dims, (C»(D)) = nk/2 = dimz, (B) + dimg, (D) + 1.

The codewords of the code Cy(D) are determined in
the following way: this is no less a criterion than MOG
or MINIMOG (cf. [2] Ch. 11).

Theorem 9 Under the above situation, the following hold:

Co(D) = (I(B), T1(0))* N L\(D)
={r=(x;) e (F)"""|

i Xy = — i xl,(Vl),L(x) ED}
=1 =1
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Proof. Let
W= {(I(B), T:(0)) .

By lemma 7, we have dimg, (W) = ng" — (dimg, (B) + 1)
= n(k — 1). Consider the restriction of the linear map L
to W-

Liy: W—TF"

We shall show that L|  is surjective. Take any d € 7. ,
then, by lemma 1, (Ty(d), 72(0)) = n + 2 — wt(d).
Therefore if we set w = To(d) + al(e;) with a = wt(d)

— n — 2, then we have, by Lemma 6,

(w, T»(0)) = (Tx(d) + al(e;), T5(0))
=n+2—-—wt(d) +a=0.

Letb = (by, - - -, b,) € B, then, by the condition (CI),
we have (w, I(b)) = (T5(d), I(b)) = >)%_,b;= 0. Thus
w is contained in Wand L(w) = L(Ty(d) + al(e;)) = d;
hence L| y is surjective.

We denote by U the kernel of the linear map L|y.

Since

dimg, (W) = nk — (dimg, (B) + 1),
dimg, (F7) = |F, : F,|n,

it follows

dimg, (U) = nk — (dimg, (B) + 1) — |F, : F,|n
=nk—1-f")=n.

Since Cy(D) is self-dual, it follows C5(D) c (L|w) (D).
Thus, by Theorem 8 we have

dimg, (L| ) (D)) = dimg, (U) + dimg, (D)

=n+@=nk/2.

Therefore we have Cy(D) = (L] ) (D). Thus we have
shown the first equality.

For a matrix x = (x;;) € (F,)* * ", we have
k k
(x,I(ey) —I(e) = leil - leil
and
k n
(x, To(0)) = (x, I(ey) + T(0)) = leil + lelj-
i= j=

Therefore, by the first equality, we have the second one.

O

Example 5 (The binary Golay code) Letq =2,q" =4, n
= 6, and D the Hexacode H. Then Co(H) is the extended
binary Golay code [24, 12, 8] with weight distribution:

weight 0 8 12 16 24
# 1 759 2576 759 1

Example 6 (The ternary Golay code) Letq =q' =3, n =
4 and D the Tetracode T, i.e,

T={(@b. ¢(1). p(~1))|a.b €Fs, ¢ (x) = ax + b}
cF3

Then Co(T) is the extended ternary Golay code.

Example 7 (Hamming code) Let ¢q =2,q" =4, n =2 and
let D be a code in F5 spanned by {(1, 1)) or {(1, @)) over
IFy. Then Cy(D) is the Hamming [8, 4, 4] code.

Now we shall investigate the minimal distance of a
code Cy(D).

Theorem 10 Assume that q = 2 and q¢’ = 4. Suppose n > 6
and n is even. Furthermore, assume D is an even n
dimensional IF »-linear subspace with minimal distance w =
4. Then the code Cy(D) is a self-dual binary [4n, 2n, 8]
code. Moreover, if n = 2 (resp. 0) (mod 4), then Cy(D) is
doubly (resp. singly) even.

Proof. Let d be the minimal distance of Cy(D). Since the
weight of I(e;) + I(e;) € Cyo(D) is 8, it follows d < 8.
Let x = (x;;) be an element in Cy(D) with wt(x) = d. By
Theorem 9, the value 3V%4_, xi; = — 2, 7=12y; does not
depend on the choice of j. We call this value the parity
of x and denote by parity (x). If parity (x) = 1, then x has
at least one point in each column. Hence if n > 8, d =
wt(x) = 8. In the case when # = 6, if x has one point in
each column, by parity (x) = 1, then the weight of L (x)
€ D has to be odd. Since D is even, this cannot occur.
Therefore d = wt(x) > 8. Assume x has parity 0. Then if
the coordinate of L(x) at i is not 0, then the number of
non-zero components of x in the i—th column is two.
Therefore wt(x) = 2wt(L(x)) + 4a = 8. Here a is the

number of columns in which every components of x is 1.
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Thus we have proved the former.

Now we shall prove the last assertion. If x € Cy(D)
has even parity, then we already know that wt(x) = 0
(mod 4). Assume that x has odd parity. Set

1. b, is the number of columns i where x;; = 1 and two
of {xz;, X3, 24;} are 1,

2. b, is the number of columns 7 where one of {xz,-, X3,
x4} is 1,

3. by is the number of columns 7 where x;; = 1 and all
of {x2i, 23;, x4} are 0,

4. b4 is the number of columns i where x;; = 0 and two

of {xz,', X3, 14,‘} are 1.

Since L(x) has even weight, b; + b, has to be even. By

parity (x) = 1, by + b3 is odd. Therefore b, + b3 is odd;
hence b, + by = n — (b, + b3) is odd. Thus we have

wt(x) =n+2(b;+by) =n+2 (mod4).
Hence we have the last assertion. L]
Example 8 (Binary singly-even self-dual [32, 16, 8] code)

Letq=2,q" =4. Let D C F be a singly even self-dual [8,
4, 4] code over IF 4 dened by

D={(ab,c,db+c+da+c+da+b+d,
a+b+c)lab,c,delF,}.

Then Co(D) is a binary singly even self-dual [32, 16, 8]
code with weight distribution:

weight 0 8 10 12 14 16
# 1 364 2048 6720 14336 18598
18 20 22 24 32
14336 6720 2048 364 1

Example 9 (Binary doubly-even self-dual [40, 20, §]
code) Let D be the even [10, 5, 4] code over [Fy in
Example 4. Then Cy(D) is a binary doubly even self-dual
[40, 20, 8] code with weight distribution:

weight 0 8 12 16 20
# 1 285 21280 239970 525504

24 28 32 40
239970 21280 285 1

Similarly, we have the following:

Theorem 11 Let q = q' = 3, and n = 4 withn = —2 (mod

3). Assume that D is a ternary [n, nl2, w] code which
satisfies wt(d) = 0 (mod 3) for each d € D with w = 3.
Then Co(D) is a ternary self-dual [3n, 3n/2, 6]-code.

5. Caselll

We are still in the situation (2) of §2. Furthermore,
let IF,, be a subfield of I, and assume that the section T
of Lis an I, -linear map.

For an IF-subspace B C (F,)" and an [, -subspace
Dc(F,)", let C(B,D; I, T) be a code of split type.

Lemma 12 Assume that T(D) C (qu)k”. Ifdy, d,, -,

d,, are linearly independent vectors in D over ¥, , then

T(dy), T(dy), - - -, T(d,,) are linearly independent over
F,.

Proof. Since T is an injective IF ,, -linear map, it follows
that 7(d,), - - -, T(d,,) are linealy independent, in (F ,)**”,
over [F,. This means that the rank of the matrix consisting
of the vectors T(d,), * * -, T(d,,) in (F,)*" (=~ (F,)**")
is m. Therefore they are linearly independent over IF,.

U
Lemma 13 Assume that T(D) c (F,,) B SoT=0andk
€F;. Then
dimr, C(B,D;I,T) =dimrF, B+ dimrF, D.

Proof. Let {bl, by, - - -, b,} be a basis for the code B
over IF, and {dl, d, .-, dm} be a basis for the subspace
D over F,. Then the set {I(b;); T(d)} is linearly
independent over IF,. In fact, if they satisfy

Zlail(bi)+ ilBiT(d/‘) =0 (a;,B;eF,,
=1 =1

then, applying the I ,-linear map S, we obtain

Here we used the relation Sol =k« idr) and So T = 0.
Since the set {b;} is a basis and k£ € [}, , it follows that

o, =0y="---=0;=0. Therefore we have

ﬁlﬁ/‘ T(d/) =0.
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Now applying Lemma 12, we have B, = By =+ =
B, =0. Therefore the set {I(b,), S(d,)} is linearly
independent.

Any element d € D can be written in the form

d= _Zl%‘df (Y,EFq).
~

Since T is I, -linear, we have
T(d) = 27, T(d).
i=1

Therefore the set {7(d,) , - - -, T(d,,)} generates the
subspace (T(D)); hence the set

{I(by), -+, 1(b), T(dy), -+, T(d,)}

forms a basis of C(B, D; I, T) over IF,,.

From now on we assume the following:
610=q=2f,q'=22f0rq0=2f,q=q’:22f
and

F,=F, (e),
€+ac+B=0 (a,BeF,),
K={w, =B, w,=a€, w; = €}.

Then neither o nor B are 0 and any element of F, can
be written as aae + bf with a, b € IF,, . Define a section
Ty: (F,)"— (F,)*", of the linear map L : (F,)**" —
(F,)", by the sum ®" ¢, where

a
t:F,— F)>" aae +bB—| b
a+b,

Then T is an I, -linear map and the composition of the

summation map S : F%*” — T, and Ts is 0:
(6) SoT,=0.

Recall that the linear map L is the sum @ "] where

X1
l: X2 Mx1ﬁ+x20{€+x362.

X3

If¢'=4and F, = {0, 1}, then F, = IF, () where w is

aroot of 2 + x + 1, and the linear mapt:F,— F3*!

is given by
0 1
1 1 0

If ¢ =16 and F, = {0, 1, w, a)z}, then Fis = Fy(€)
where € is a oot of 2° + @wx + 1 = 0;hencex = w, B =
1.

We denote by C3(B, D) the code C(B, D; I, Ts) of

split type.

Theorem 14 [f B is an [n, k] code over F, and D is an [n,
k'] code over . , then C5(B, D) is a [3n, k + 2k'] code
overF,.

Proof. By the equality dimp, (D) = 2dimy, (D) and
Lemma 13 we obtain the theorem. L]

The above theorem contains the Turyn construction

as a special case.

Example 10 Ser g, = ¢ = p’, ¢’ = p*’ and take a, B and €
as above. Let B and D be [n, k] and [n, k'] codes over IF,
then the code C3(B, D ® IF,) is a code obtained by the

Turyin construction.

Example 11 The following codes are discussed in Conway,
Lomonaco and Sloane [3]. Let B be the [5, 2, 4] code over
IF4 obtained by shortening the [6, 3, 4] hexacode H over
IF4. A generator matrix for B is as follows:

wo o o @ 0

0w @ ® w/
Let D be the conjugate of B, then D1 := C3(B, D ® Fy) is
a [15, 6, 8] code over Fy. Moreover, let By be the [15, 1,
15] binary code generated by (1, - - -, 1), then C3(B1, D1)
is a [45, 13, 16] binary code.

Now we shall study the self-duality of the code

Cs(B, D) with ¢’ = 4, so we assume ¢’ = 4 from now on.

Lemma 15 /1. (I(b),1(b")) = (b,b") (b,b € (F,)").
2. (I(b), Ts(d)) = 0, (b (F,)", d € (F)").
3. In the space (F,)* ™",
(t(k), (k) =0, (t(k), t(k")) =1
(k,k'(#)€K=TFY).
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4. If wt(d), wt(d’) and wt(d — d”) are even, then
(Ts(d), Ts(d) =0, (d, d" e (Fs)").

Proof. By definitions and (7), we get 1, 2 and 3. Ford =
(dln Y dﬂ)) d’ = (d,b T, d,n) € (F4) ", define my, ma,
ms, my by the following:

1. m; is the number of 7 such that 7 is contained in
supp (d) \ (supp(d) N supp(d’)),

2.my is the number of 7 such that d; # d’; and that ¢
is contained in supp (d) N supp(d’),

3. m5 is the number of 7 such that d; = d’; and that 7 is
contained in supp (d) N supp(d’),

4. m, is the number of 7 such that 7 is contained in
supp (d’) \ (supp(d) N supp(d’)).

Then we have wt(d) = my + my + ms, wt(d') = my +
msy +myand wt(d — d’) = m, + m, +my. By 3, we have
(Ts(d), T5(d")) = m,. By the assumption, wt(d) =
wt(d’) = wt(d — d’) = 0 (mod 2); hence we have m;
+my + my = my+ mz + my = my +my+my =0
(mod 2). These equations imply 7, = 0 (mod 2). Thus
(T5(d), Ts(d"))=m, = 0 (mod 2). ]

Lemma 16 Assume ¢ = 2 or ¢ = 4 and q' = 4. If B(C
(F,)") is self-orthogonal and D(C (F,)") is even, then

C4(B,D)(c (I[“q)3X ") is self-orthogonal.

Proof. Let b, b’ be two elements in B. Since B is
self-orthogonal, it follows (I(b), I(b")) = (b, b’) = 0. If
d, d’ € D then, by Lemma 15, (I(b), T3(d)) = 0 and
(Ts(d), T5(d")) = 0. Therefore C3(B, D) is self-orthogonal.

L]

Lemma 17 Assume that ¢ = 2 or ¢ = 4 and q' = 4 and
that n is even. If B(C ) is self-dual and D(CF}) is an
even [n, n/2] code, then Cs(B, D) is a self-dual [3n, 3n/2]

code over IF . In particular, C3(B, D) is an even code.

Proof. Since B is self-dual, it follows dimg, (B) = n/2. By
Theorem 14, we see that C3(B, D) is a [3#n, 3#/2] code over
IF,. By the previous lemma, Cs(B, D) is self-orthogonal,
hence it is self-dual. ]

Theorem 18 Assume n is even. If B is a binary doubly
(resp. singly) even self-dual [n, n/2, d] code and D is an

even [n, ni2, d'] code over ¥y, then C3(B, D) is a binary
doubly (resp. singly) even self-dual [3n, 3n/2,m]-code with
m>max{d, d’}.

Moreover, if

(8) supp (b) # supp(d)

forbe Bandd € D withwt(b) =d and wt(d)=4d’, m >
max{d, d'}.

Proof. By the above Lemmas, it suffices to show that
Cs(B, D) is doubly or singly-even. Take any element x =
(x;;) in C3(B, D). Recall K = {a)1 =1, w,=w, w3 = CT)}
Define numbers mj (1 <j < x) by the following:

1. m is the number of columns x; of x such that one of
the three components of x;is equal to 1,

2. my is the number of columns x; of x such that two
of the three components of x; is equal to 1,

3. m3 is the number of columns x; of x such that all of

the three components of x; are equal to 1.

Then we have wt(x) = 3ms + 2ms + my, wt(S(x)) = m;
+ msand wt(L(x)) = m, + m,. Since L(x) € D and D is
even, it follows wt (L (x)) = m; + m5 = 0 (mod 2); hence

wt(x) = 3(ms + my) + 2(my + my) — 4m,
= 3(ms+ m;) (mod4).

On the other hand S(x) € B, and if B is doubly-even,
then ms; + m; = 0 (mod 4); hence Cs(B, D) is
doubly-even. If b € B, then I(b) € C3(B, D); hence if B
is singly-even, then so is C3(B, D). If x € C5(B, D), then

S(x) € B, L(x) € D; hence we obtain immediately the
assertion for the minimal distance. L]

Example 12 (Binary singly-even self-dual [18, 9, 4] code)
Let B be a binary singly-even self-dual code [6, 3, 2] and
let D be the hexacode. Then Ci(B, D) is a binary
singly-even self-dual code [18, 9, 4].

If B and B’ are binary codes with

BNB =(1=(1,1-,1),
then B and D := B’ ® IF, satisfy (8). Thus we have the

following examples.

Example 13 (Binary Golay [24, 12, 8] code) Assume eg
and e's are Hamming [8, 4, 4] codes such that dim(eg N

_9_
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e's)=1. PutB:=esandD := ¢'s ® F,. Then C4(B, D) is
the binary doubly-even self-dual [24, 12, 8] code. so it is
the binary Golay code. (cf. Example 1)

Example 14 (Binary singly-even self-dual [36, 18, §]
code) Assume dyo and d’15 are binary singly-even self-dual
[12, 6, 4] codes such that dim(d, N d'1) = 1. Put B :=
dy and D := d'yy ® Fy. Then C3(B, D) is a binary
doubly-even self-dual [36, 18, 8] code.

Example 15 (Binary doubly-even self-dual [72, 36, w] (w
> 12) code) Assume G and G’ are binary Golay [24, 12, 8]
codes such that dim(G N G') = 1. Put B:= Gand D :=
G’ ®Fy. Then Cs(B, D) is a binary doubly-even self-dual
[72, 36, w] (w = 12) code.

It is very interesting to determine the minimal weight

w of this code. Regrettably, we can not determine it.

Example 16 (Binary doubly-even self-dual [48, 24, 12]
code) Let B be a binary [16, 8, 4] code generated by the
following:

b, = 1111000000000000, &, = 0011110000000000,
b3 = 0000111100000000, &, = 0101010100000000,
bs = 0000000011110000, b5 = 0000000000111100,
b7 = 0000000000001111, &g = 0000000001010101,

and let D an T i-linear [16, 8, 6] code generated by the
following:

d; = 3230000003030020, d, = 3302020010000010,
ds = 2301000013200000, d4 = 3300100000120200,
ds = 2300032000030003, ds = 3200010010000302,
d, = 2200001001003003, ds = 3100000300003130,

where 2 = @, 3 = ®. Then Cs(B, D) is a binary
doubly-even self-dual [48, 24, 12] code.

It is known that there is only one binary doubly-even
self-dual [48, 24, 12]-code, which is obtained as an
extended quadratic residue code [3].

For convenience, we write the weight distribution and

a set of generators of C3(B, D).

weight 0 12 16 20 24
# 1 17296 535095 3995376 7681680
28 32 36 48

3995376 535095 17296 1

A set of generators for Cs(B, D)

coordinate| ((1; 1); (@; 1); (@; 1); (15 2); (@; 2); (@; 2); - - - 5 (@; 16))

Ty(dy) 110101110000000000000000000110000110000000101000
Ty(wd;) | 011110011000000000000000000011000011000000110000
Ty(dy) 11011000010100010100000001100000000000000001 1000
Ty(wd,) | 011011000110000110000000101000000000000000101000
Ty(ds) 101110000011000000000000011110101000000000000000
Ty(wds) | 110011000101000000000000101011110000000000000000
Ty(d,) 110110000000011000000000000000011101000101000000
Ty(wd,) | 011011000000101000000000000000101110000110000000
Ty(ds) 1011100000000001101010000000000001100000000001 10
Ty(wds) | 11001100000000001 111000000000000001100000000001 1
Ty(dy) 110101000000000011000000011000000000000110000101
Ty(wdg) | 011110000000000101000000101000000000000011000110
Ty(d,) 101101000000000000011000000011000000110000000110
Ty(wd;) | 11011000000000000010100000010100000001100000001 1
Ty(ds) 110011000000000000000110000000000000110011110000
Ty(wdg) | 011101000000000000000011000000000000011101011000
I(by) 111111111111000000000000000000000000000000000000
I(by) 000000111111111111000000000000000000000000000000
I(by) 000000000000111111111111000000000000000000000000
I(b,) 000111000111000111000111000000000000000000000000
I(bs) 000000000000000000000000111111111111000000000000
I(by) 000000000000000000000000000000111111111111000000
I(by) 000000000000000000000000000000000000111111111111
I(by) 000000000000000000000000000111000111000111000111

Finally, we shall study codes C3(B, D) over IF,.

Lemma 19 If B is an even codes over 'y and D is a
self-dual code over T, then C3(B, D ® IF4) is an even code

over IF,.

Proof. Each element x € C5(B, D) can be written in the

form:

t
x=1(b) + Z a; Ts(dy)
=l (bEB,diED®F4,aiEF4).

Puty:=Yi_;a; Ts(d;). Since

S = 3 a:So Ty(dy) = 0,

i=1
it follows that each column of y has one of the following:

t(oﬂ 0) 0)7 t(k) 05 k) 0) t(lﬂ a)ﬂ CT))O-
(keK=F,,0€8;).

Here t(dl, as, 03)6 = t(ag(l), as2), ag(g)). We denote by
y; the j-th column vector of ¥ and define the numbers
(1 £1<5) by the following:

L.m, =4 {jesupp(b) |y;=t(1,0,@)" }
2.my=# {j¢supp(b) |y;=t(1,0,@) "}
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3.my=F {jesupp(b) |y, =1(x;0,2,)° }
4.my=$# {jesupp(b)|y;=1(k,0,k)°, k+#b;}
5.ms= 4 {j¢supp(b) |y, =t(k,0,k)°}.
By Lemma 15 4,
1.9 = 30 (Tod). T+d) =0

On the other hand, since (y, y) = wt(y) (mod 2), it

follows

Wt(y) = 3(”’11 + mz) + 2(7}’!’; + my + WI5)
=3(m; +m2) =0 (mod?2);

hence m; + m,; = 0 (mod 2). Then we have

wt(x) =3wt(I (b)) — m; —
wt(b) (mod 2).

27}13 + 37}’!2 + 27}’!5

Since B is even, it follows wt(b) = 0 (mod 2); hence
wt(x) = 0 (mod 2). Thus Cs(B, D) is an even code. [|
It seems for us that the following holds: If B is an
IF,-linear even [#, #/2, d’] code. and D is an IF,-linear
self-dual [n, #n/2, d] code, then Cs(B, D) is an [F,-linear
self-dual [3#, 3n/2, m] code, where m > max{d, d'}.

Example 17 ([6, 3, 4] Hexacode) Let B be an I i-linear
code [2, 1, 2] generated by by = 1@ and let D an T j-linear
code [2, 1, 2] generated by di = 11. Then C3(B, D) is the
[6, 3, 4] Hexacode.

Example 18 (IF ;-linear self-dual [24, 12, 8] code) Let B be
an IF ;-linear [8, 4, 4] code generated by the following:

b, = 02010130, b, = 02001031,
b; = 00100131, b, = 12111131,

where 2 = @ and 3 = @ and let D an IF ;-linear [8, 4, 4]
code generated by

00111100,
01010101.

d,; = 11110000, d, =
ds; = 00001111, d, =

Then C3(B, D) is an F y-linear self-dual [24, 12, 8] code.

weight 0 8 10 12 14 16
# 1 738 12312 177156 1106280 3788217
18 20 22 24

6206760 4419828 1032408 33516

6. Automorphisms of codes of split type

A code C(B, D) of split type has automorphisms
induced by those of B and D. In [6], Griess discusses
such automorphisms of the Golay codes. In this section,
we shall give a generalization of Griess’ argument to
codes of split type , however, our notation is somewhat
different from Griess’. So we begin with recalling basic

facts about automorphisms of codes.

For a field F, we denote by Mon (#, F) the group of
monomial matrices with coefficients in F*. Let S,, be the
symmetric group of degree #. Then S, acts on the group
(F*)" via

(ala T, an) = (01671 N/ A )

By this action, we get the semi-direct product S, x (F*)".

Then the following is an isomorphism :

¢S, (F

where

"— Mon(n, F), (0,a)— A,

apo ifj=1i°
a:(als.'.san)a AI]:{ /

0 otherwise

For an element A € Mon (n, F), we set

¢~ (4) = (0(A), a(A)).

The monomial group Mon(n, F) acts on the vector

space W= Y"i_ | Fw; with basis {w1, - -+, w,} via

W,((T 9 = =a;oW;o.
The group Aut (F) acts on the group Mon (n, F) via
(0(A),a(A)’=(0(A),a(A)?), AeMon(n,F).

Set Mon* (n, F) =
the space Wvia

Aut (F) x Mon (n, F), then it acts on

Zn'. 9 (wy)?

i=1

n
A 0
(Z ini)(a )= = Z (vie-1)"a; w,.
i=1 i=1

Now, we go back to the situation (2) in §2. For a
subset K = {®;| 1 <i<k}of F, with 2} @, =0, let
Q={(c,i)|ceK 1<j<n}.

We consider the set Q as the standard basis of the space

kXn
Rl
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V:=F>*"= 3 F,(ci).

(c,i)eQ

If the set K is Gal(F,/FF,)-invariant, the extended

monomial group Mon*(#n, IF ) acts on Q via
(c. )O = (cg;om | i°W),

where

(6,A) e Mon*(n, ) = Gal(F,/F,) x Mon (n, [F,).
Hence we have an injection:
9) Mon*(n, F,) — Mon (kn, F,).
Lemma 20 The linear map L : V— F 7. is Mon*(n, F,)-
equivariant; i.e.,

Lx™)=Lx)" (xeV,meMon*(n,F,)).

Proof. Set m = (0, A), thenm ™ = (07", (A°") ™). Set
X = 2 x(z,i)(C, i),
(c,0)eQ

then we have

Lx™) =L( Z X (e, i)™

(c,))eQ

=L( Z x(c,i)(coai"‘”” 5 ic(m)))

0
=(-, Z Caiemic iy, ).
ceK

On the other hand, we have

L(x)'” =(---, Z Cx(z,,-),"')m

ceK

¢
— (- .o ’Z c x(c,i)ai"(’"), oo )

Thus we have the equation L(x") = L(x™).
IfK=F, thenF} actson Q via
(c,)=(c+dyi), (d=(dy,-*",d,).

Hence the semi-direct product N := Mon*(n, F ) x (F,)"

acts on Q . Thus we have an injective homomorphism

(10) N(= Mon*(n,F ) x (F,)") — Mon (kn, F ).

Lemma 21 Assume K = F,. Then the linear map L

satisfies the following:
L) =L@+ (-, I(e),x)d;--+).

Proof. Let

X = Z x(c,i)(cy l) € I/sd = (dh e 7dn) € (Fq')ns

(ci)eQ

then we have

L") =LY xenled?
=L( Q) xein(c+d,i)
=L( D) X,y (€, 1)
=D gy )
=S et d)aen )
=L@+ (-, (e), x)d;, -+ ).
[]

Let (B, D; I, L, T,) be a set of data as in the Case II
and Cy(D) the code of split type.i.e., Co(D) is the linear

subspace generated by
{1(91 —ej) | 1 Sl<]§7l} U {Cz(d)ldED}

Recall that T, : ;. — Vis the section of L defined by
Ty2) =T(2) +1(e) = Z (25, 1) + I(ey).
i=1

The group of extended automorphisms for D is
Aut*(D) = {m € Mon*(n,F,) | D" = D}.
Then the restriction of the injective homomorphism (10)

gives an isomorphism (cf. [6] (5.25),(7.19)):

Proposition 22
Aut*(D) x D ~ Mon*(n, IF /) x (F,)" N Aut(CyD)).
Proof. If m € Aut*(D), then

(I(e;) — 1(9/)) " =1I(ejom) — I(ej""”)),
(I(e)) + T(d))” = I(e;om) + T(d").

If ve D, then

(I(e; - e;‘))v =1I(e; - ej),
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(I(e)) + T(d)"=1(e;) + T(d + ).

Thus, if (m, v) € Aut*(D) x D, then (m, v) € Aut (Cy(D)).
Conversely, if (m, v) € Aut(Cy(D)), then ™ €

Cy(D) for each x € Co(D). Set x = I(ey) + T(0) = T5(0).
Then we have L(x) = 0, x™= I(e;om) + T(0) and
(I(eyem)) + T(0), I(e;)) =(T(0), I(e;)) = 1. Therefore

L(x (m,v)) — L(x (m,O(l,v))
=Lx")+ (-, (e), x")v; )
=Lx)"+v=v.

Since the left hand side of this is contained in D, it
follows v e D and (m, 0) =(m, v)(1,—v) € Aut(Cy(D)).
Now we set x = I(e;) + T(d). Then L(x") =

L(I(e;)) + T(d))” =d” € D. Since d € D is arbitrary,
m must be in Aut*(D). ]

Now let (B, D; I, L, Ts) be a set of data as in the Case
III with (g, ¢") = (q, 4). We shall define the subgroup

Aut(B) N Aut*(D) of Mon*(n, F4) by
Aut(B) N Aut*(D)
= {m € Mon*(n, F,) | B°™ = B, D" = D}.

By the injection (9), it becomes a subgroup of Mon (37,
F,).

Proposition 23

Aut(B) N Aut*(D) ~ Mon*(n, IFy) N Aut(Cs(B, D)).

Proof. If Aut(B) N Aut*(D), then

I(b)" =1(b""),
T3(d) "= T3(dm),

where b € Band d € D. Since 6(m) in Aut(B) and m in
Aut*(D), m is contained in Aut(Cs(B, D)).

Conversely, if m € Aut(Cs(B, D)), then 2™ € Cs(B,
D) for each x € C4(B, D). For any elementd in D, x :=
Ts(d) € C3(B, D) and L(x™) = L(T5(d))” = d” € D;
hence m € Aut*(D). Now we set x = I(b), where b € B.
Then S(x™) = S(x) °™ = b°"™ & B; hence o(m) € Aut(B).
Therefore m is contained in Aut(B) N Aut*(D). O

Remark If B =egand D = e’y ® [, where e, e’y are
Hamming [8, 4, 4]-code with dimlF, (es N e’s) = 1, then
Aut(B) N Aut*(D) ~ S3 X Ly(7) (cf. Curtis [2], [3]).

Finally we introduce an M-matrix of a code of split
type. Let (B, D; I, L, S) be a data as in the situation (2)
and C the code of split type associated with it. For each
element (¢, i) € Q = {(c, i) |c € K, 1 <i < n}, take a
non-zero vector e ; in the coordinate line F,(c, 7).

Consider a k X n-matrix

M= (f(c,i))

obtained by rearranging the set {e..;}. The matrix M is
called an M-matrix of the code C if the linear
automorphism fof V= 2] .ico F, ~ (qu)k” defined
by (¢, i) — f(..;y induces an automorphism of the code
C. If once we can find methods of making M-matrices,
we get many automorphisms of the code C.

Since C is a code of split type, there exist subsets B’
and D’ of B and D, respectively, such that

{Ib"),Sd")|beB.d €D’}

forms a basis of the code C. Therefore M is an M-matrix

if the following are contained in C:
{f(p"), f(S()|b' eB,d" €D’}

In particular, by Theorem 9, it is easy to check this in
the Case I1. Thus, for Golay codes, we have nice methods
of making M-matrices (cf. Th. 2.5.1 in [12] and Th.4 in
[9]). For further discussion and application of M-matrices,
we refer to [12], [9], [11], [13], [8] and [10].
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Transport Sector Marginal Abatement Cost Curves in Computable General
Equilibrium Model

Atit TIPPICHAL', Atsushi FUKUDA®" and Hisayoshi MORISUGI®
Abstract

In the last decade, computable general equilibrium (CGE) models have emerged a standard tool for climate
policy evaluation due to their abilities to prospectively elucidate the character and magnitude of the economic
impacts of energy and environmental policies. Furthermore, marginal abatement cost (MAC) curves which
represent GHG emissions reduction potentials and costs can be derived from these top-down economic models.
However, most studies have never address MAC curves for a specific sector that have a large coverage of
countries which are needed for allocation of optimal emission reductions. This paper aims to explicitly describe
the meaning and character of MAC curves for transport sector in a CGE context through using the AIM/CGE
Model developed by Toshihiko Masui. It found that the MAC curves derived in this study are the inverse of the
general equilibrium reduction function for CO, emissions. Moreover, the transport sector MAC curves for six
regions including USA, EU-15, Japan, China, India, and Brazil, derived from this study are compared to the
reduction potentials under 100 USD/tCO, in 2020 from a bottom-up study. The results showed that the ranking
of the regional reduction potentials in transport sector from this study are almost same with the bottom-up study
except the ranks of the EU-15 and China. In addition, the range of the reduction potentials from this study is
wider and only the USA has higher potentials than those derived from the bottom-up study.

Key Words : Marginal abatement cost curve, Computable general equilibrium model, Top-down approach,
Sectoral CO, emission, Transport sector

of global CO, emissions, it is necessary to treat this
1. Introduction sector particularly and analyze its mitigation potentials

by sector-based approach. Hence, this paper generates

Recently, the marginal abatement cost (MAC)
curves have become an efficient instrument to analyze
potentials of GHG mitigation and impacts of the
implementation of the Kyoto Protocol and its emission
trading””. Also, the MAC curves can derive optimal
emission reductions for each country which minimizes
total abatement cost for a given target’. However, to
deal with regionally sector-specific emission reductions,
there is no study that provides sectoral MAC curves
which have a large coverage of countries and regions
yet. For example, Ellerman and Decaux” apply the
EPPA Model to generate country-based MAC curves
for 12 regions while Sue Wing” develop a multi-sector
computable general equilibrium (CGE) model which
could generate sectoral MAC curves but only for the

United States. As transportation is sharing almost 25%

MAC curves for transport sector by region and describes
the implication of the sectoral MAC curves in a CGE
context through applying the AIM/CGE Model. The
algebraic structure and equilibrium of the model are
explicitly explained in order to capture the characteristic
of the sectoral CO, emissions from the transport sector
and relevant variables which influence to the MAC

Curves.

2. Marginal Abatement Cost Curves

There are three ways to represent the abatement
costs, i.e., investment cost to implement technological
options in order to abate emissions; reductions in GDP
due to reduction in production to avoid emissions; and

willingness to pay (WTP) to emit more emissions which
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is identical to tax level. WTP is most commonly
approximated by the consumer and producer surplus
whose consumption and production is affected by the
mitigation action”. The total abatement cost (TAT) can
be measured simply in a framework of partial
equilibrium analysis as the net economic loss due to the
introduction of CO, emission taxation which is so-called
deadweight loss (DWL) as shown in Fig. 1. In a general
equilibrium model, marginal abatement cost (MAC) is a
tax level similarly to the partial equilibrium analysis and
the DWL is defined as the reduction in indirect utility
divided by marginal utility of income.

In Fig. 1, once a CO, tax is levied, consumer surplus
will be reduced as the reduction in consumption which
results the reduction of CO, emissions. Based on this
concept, different tax levels will give different reductions
in emissions. The coordinates between the CO, tax levels
and corresponding CO, emission reductions can be
obtained by varying the levels and then a MAC curve
can be plotted as shown in Fig. 2. As this MAC curve
derived from the economic impact, the area under the
MAC represents the total abatement cost which equals
to the DWL.

$1CO,

Demand function of CO, emissions

Reduction
Emissions (tCO,)

CO, tax levels

Fig. 1. Economic impact due to CO, tax

$1CO,

Marginal Abatement Cost

,.

Emission reductions (tCO,)

Fig. 2. The marginal abatement cost curve

There are two approaches to generate MAC curves;
“bottom-up” engineering/technology-based models and
“top-down” economic models"®”. The first approach
simulates the interactions among the technologies that
form the economy’s energy system. The bottom-up
models contain detailed empirical information on the
technical characteristics of specific abatement options. It
means that the bottom-up approach represents the
direct cost of the available abatement technologies. On
the other hand, the top-down models are based on
aggregated microeconomic models. The models are most
often computable general equilibrium (CGE) models
which
technologies only implicitly. The top-down models treat

contain the information of abatement
abatement costs purely as the profit or utility foregone
as a result of forced changes in behavior induced by
environmental policy”. As the estimation of MAC is
essential to assess the potential of climate change
mitigation, the cost estimation studies for countries
through both top-down and bottom-up approaches have
been discussed extensively in the Assessment Reports of
IPCC Working Group III since the Second Assessment
Report (SAR). The costs estimated by the bottom-up
studies that rely on more detailed and comprehensive
assessments of technological options tended to arrive at
larger efficiency potentials and lower costs of saved
energy than the less detailed studies. The comparison of
top-down model and bottom-up modeling methodologies
has been discussed in the ITPCC Third Assessment
Report (TAR). However, the comparison of GHG
mitigation potentials by country had been done only
within the same approach. Latter, the comparison of
sectoral potentials for the global GHG mitigation
estimated by bottom-up and top-down approaches had
been made in the IPCC Forth Assessment Report
(AR4). Surprisingly, several sectors by the top-down
models, for example, energy supply, buildings, and
industry sectors indicate a higher emission reduction
than the bottom-up approaches. One of the reasons is
noted that top-down models allow for product
substitution, which is often excluded in bottom-up
sector analysis. Also, it found that the differences
between bottom-up and top-down are larger at the
sector level. The existing studies however have not been

compared the potentials of the transport sector by
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country between the bottom-up and top-down models
which is one of objectives of this study.

Based on the literature review, it is practical difficulty
to develop the MAC curves for transport sector which
have a large coverage of countries and options to
meeting the objective of this study. Also, we aim at
assessment of reduction potentials and abatement costs
of CO, emissions across sector in general—not specific
abatement technologies. Therefore, in this study we
employ a multi-region multi-sector CGE model which
could tackle GHG emissions from a specific sector
covering major emitting countries and regions. In a
CGE model, marginal abatement cost curves can be
derived when the costs associated with different levels of
reductions or the reduction targets associated with
different abatement costs are generated which will be

further explained in next sections.
3. Modeling Sectoral CO? Emissions in a CGE Context

In a CGE model, CO, emissions are primarily
associated with the use of fossil fuels (i.e. coal, oil and
gas) as intermediate inputs to production sectors and as
final consumption demand to household as shown in
Fig. 3. The main actors in the diagram are households,
who own primary factors of production (e.g. capital,
labor and natural resources) and the final consumers of
produced commodities, and firms, who rent the factors
of production from the households for the purpose of
producing single goods and services that the household
then consume. The critical data that determine the
structure of a CGE model are contained in social
accounting matrix (SAM), which represents a snapshot
of the economy of each region”.

Each production sector produces single commodity
or service by inputting intermediate goods and primary
factors. To address energy and climate policies,
intermediate inputs for production and produced goods
for final consumption are divided into non-energy and
energy goods. Some production sectors of non-energy
goods/services use a relatively large proportion of energy
goods (i.e. fossil fuels and electricity) as inputs, such as
energy intensive productions, metal and machinery, and
transport. Energy goods include fossil fuels which are
carbon content goods, and electricity. Then, each fossil

fuel (i.e. coal, oil and gas) is modeled as a composite
with carbon emissions by a Leontief form, i.e. the
elasticity of substitution equals zero. These fossil fuels
composites are crucially important that we can deal with
CO, emission tax by introducing price of CO, emission
permits. Similar to production sectors, we can track
fossil fuels consumption and its CO, emissions in final

consumption sector as shown in the diagram.

Production
factor inputs

Fossil fuels B>

Sectors
J—/ Ll

{

.
Capital .
Primary Factors

Household

Final Demand
Sector

inal consumption demand

Fig. 3. A multi-sector CGE framework with CO, emission

4. The AIM/CGE Model
4.1 Overview

In this study, we employed a global CGE model
namely the AIM/CGE Model developed by Masui'’.
The AIM stands for Asia-Pacific Integrated Model
which is a large-scale computer simulation model of the
National Institute for Environmental Studies (NIES),
aiming to assess the climate change problem'"'”. The
AIM/CGE Global Model is written by the GAMS/
MPSGE modeling system'”, based on GTAPinGAMS
and GTAP-EG datasets'. The global economic data used
in the model is based on GTAP version 6 which has base
year of the data in 2001 and disaggregates the global
economy into 87 regions and 57 sectors. Nevertheless, the
AIM/CGE model was added many items, for example,
more GHGs, biomass, and power generation technologies.
The model aggregates the GTAP dataset into 24 regions,
22 production sectors and a final consumption sector'”, as
presented in Table 1. The AIM/CGE model has dynamic
structure which can simulate the global economy in the
base year, 2001 and from 2010 to 2110 with a 10-year
span. The target year of this study is 2020. The study
aims to develop MAC curves for the transport sector in
2020 and then utilize the derived MAC curves to analyze
CO, emission reduction potential in the transport sector
by region for the post-Kyoto Protocol which will be
discussed in the section 6.
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Table 1 Regions and sectors in the AIM/CGE Global Model

Countries and Regions Production Sectors
Developed Countries Non-Energy
Japan (JPN) 1. Food (FOD)

Australia (AUS) 2. Energy intensive products (EIS)

New Zealand (NZL) 3. Metal and machinery (M_M)

Canada (CAN) 4. Other manufactures (OMF)

United States of America (USA) 5. Water (WTR)
6
7.
8

Russia (RUS) Construction (CNS)
Western Europe (EU15) Transport (TRT)
Eastern Europe (EU10) Communication (CMN)

Rest of Europe (XRE) 9. Public service (OSG)
Developing Countries 10. Other service (SER)
Korea (KOR) 11. Investment (CGD)
China (CHN) 12. Agriculture (AGR)
Indonesia (IDN) 13. Livestock (LVR)
India (IND) 14. Forestry (FRS)

Thailand (THA) 15. Fishing (FSH)

Other South-east Asia (XSE) _ 16. Mining, except fossil fuels (OMN)
Other South Asia (XSA) Energy

Rest of Asia-Pacific (XRA) 1. Coal (COA)

Mexico (MEX) 2. Crude oil (OIL)

Argentine (ARG) 3. Petroleum products (P_C)

Brazil (BRA) 4. Gas (GAS) o

Other Latin America (XLM) 5. Gas m.ar.1ufacture distribution (GDT)
6. Electricity (ELY)

Middle East (XME)
South Africa (ZAF)
Other Africa (XAF)

Households
Final consumption

4.2 The structure of the model

All production and final consumption sectors are
modeled using nested Constant Elasticity of Substitution
(CES) production functions, or Cobb-Douglas (C-D)
and Leontief (LT) forms, which are special case of the
CES, as shown in Figs. 4 and 5. Typical productions of
non-energy sectors (including the transport sector) have
the structure as shown in Fig. 4. At the top of the
production tree, each sector i/ in a region r produces a
composite commodity that can be sold domestically or
exported to other regions'®. The relationship between
domestic and export goods can be represented by a

Constant Elasticity of Transformation (CET) function

as
of
6¥+1 c}{+1 g¥+1
Yot Yp 9
YVir = Yir i,rDi‘r + (1_Bi,r)Ei,r (1)

where, y; . is sector i’s total output, y;, is the output
efficiency parameter, B},(r is the share parameter, D;
represents sector i’'s supply for domestic, E;, is the
sector’s output supply for export, and o} is the CET for
sector i. Each firm allocates it’s output between domestic
and export markets to maximize revenue, subject to the

CET function, yielding export goods output per unit of

domestic goods output as a function of relative prices,

Y\ /D N\t
elEoET
Di,r iY:r plE’:r

where, pEr and pfr are, respectively, prices of domestic

and exported commodities from sector i.

Domestic goods Export goods

CET
Output

Value-added e energy Each non-energy intermediate
CES inputs

Value-added
CES

Fossil fuel e electricity

CES

Capital Labor Land Natural Fossil fuel Electricity
resources
CES
Coal » CO, Fossil fuel liquid Fossil fuel gas

Coal CO» Oil e CO, Petroleum Gas manufacturing e

5%

Qil

Gas ¢ CO,

products  CO, T CO,
Gas CO.

€02 petrgleum CO,
products manufacturing

Fig. 4. Production structure (non-energy sectors)

Utilty

Fossil fuel » energy Non-energy goods

CES cb

Electricity Fossil fuel Each non-energy goods

CES

Coal e CO2

pe

Fossil fuel liquid

Fossil fuel gas

Coal CO. Oil s CO, Petroleum Gas « CO, Gas manufacturing e
products e CO» 2

oi 0% pegleum  CO; Gas €O Gas e
products manufacturing

Fig. 5. Final consumption

The composite output above is produced with
fixed-coefficient (Leontief) inputs of each non-energy
intermediate goods and an energy-primary factor
composite. The energy-primary factor composite is a
CES function. Primary factor (i.e. value-added) inputs of
capital, labor, land and natural resources are aggregated
through a CES production function. The energy
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composite is a CES function of electricity and fossil
fuels. At each node of the production tree, industries
will decide on volume of each input in order to minimize
production cost. The producer behavior is be formulated
as shown in Appendix A. Fossil fuel production has a
different structure—its output is produced as an
aggregate of a resource input and a non-resource input
composite. Final demand has the structure shown in
Fig. 3. Utility in each region is a Leontief aggregate of
energy and non-energy goods. The household behavior
is formulated as shown in Appendix B. Main parameters
influence to demand and substitutability both production
and consumption functions given in Appendixes A and
B are share parameters (or input coefficients in case of
Leontief form) and elasticity of substitution, respectively.
The share parameter for each input both single and
composite input can be calibrated by using the
benchmark data from the GTAP database. For example,
input coefficient for each non-energy goods (a,.;) and
input coefficient for value-added and energy goods
composite (a,.;) are involved to determine the output
volume of production sector. The elasticity of substation
is also derived from the GTAP database. The elasticity of
substitution, for example, at the 2™ level of aggregation
of value-added composite and fossil fuel-electricity
composite (0.,) is involved in aggregation along with
share parameters of value-added composite and fossil
fuel-clectricity composite to determine the input volume
of value-added and energy goods composite for the top
level of production.

Intermediate inputs for productions and final demand
for consumption are generated through the Armington
aggregation'” which mixes domestic and imported goods
as imperfect substitutes, specified as a CES function as
shown in Fig. 6. The CES function representing the
relationship between the two categories of intermediate
inputs can be expressed as

o

i
oX-1 0'%(—1 o'g(—l

X
i

e =0, [BE DT+ (1-pX IM
Xl,],r — Vijr ij,r ijr Ljr ijr (3)
where, Xj; - is composite intermediate goods from sector
i to sector j, Oj, is the intermediate input efficiency
parameter, Bi(j,r is the share parameter, D;; represents

domestic intermediate goods, M;;; represents imported

intermediate goods, and ¢¥ is the CES for sector i.

Armington goods
CES

Import goods Domestic goods

CES

Import goods from other regions
Fig. 6. International trade
Each firm decides on inputting volume between the
two sources of intermediate inputs to minimize cost,

subject to the CES function, yielding import demand per

unit of domestic demand as a function of relative prices,
X
X D\ 1%
Mi'j‘r B |:(1_Bl’1'r> <pl‘r>:| (4)
- X ™
Dijr ijr Pir

where, p?r and p?_’lr are, respectively, prices of domestic

and exported commodities from sector i.

The AIM/CGE Model represents the government
passively that collect taxes and disburses the revenues to
households as lump-sum transfers. Saving and investment
by sector in a region is modeled endogenously through
the sector 11 that collect produced goods from other

sectors to investment.

4.3 The equilibrium conditions with CO, emission
constraint

At equilibrium, the model will solve for the set of
commodity and factor prices, and the levels of industry
activity and household income that clear all markets in
the economy, given aggregate factor endowments,
households’ consumption technologies and industries’
transformation technologies. Profit maximization in the
constant-returns-to-scale case implies that no activity earns
a positive profit. On the consumer’s side, in equilibrium
income restricts expenditure, i.e. there is no excess demand
of the household, including government. Such equilibrium
can be represented by the three conditions; (1) zero profit
(2) market clearance and (3) income balance conditions
as shown in Appendix C. As the main parameters; share
parameters and elasticity of substitution, reflect demand
and substitutability, all equilibrium conditions involve

these parameters as well. For example, the zero profit
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conditions, price of output (py;,) and expenditure index
(0,) are function of all input prices at the domestic
market which involves both share parameters and

elasticity of substitution.

5. Implication of Sectoral MAC Curve in the
AIM/CGE Model

As mentioned that CO, emissions emitted from
sectors in a CGE model can be determined through
intermediate inputs of fossil fuels into that sector with
emission factor of each fossil fuel. In the benchmark
data (i.e. base case), the CO, emissions tax is equal to
zero, consequently production sectors and household
will input and consume fossil fuel regardless amount of
CO, emitted. Once we introduce CO, emission tax (or
price of emission permit), the price of consuming fossil
fuel will increase. CO, emissions by sector j (Qjcfz) and
final consumption (Qt9?) in region r then can be
calculated by eq. (5) and (6), respectively.

21
Q? = Z DiXijr (5)

i=17
21

292 =" Bicis ©

i=17

where, x;; and x;. = inputting and consuming volume of
fossil fuel (sectors 17 to 21 are, respectively, coal, crude
oil, petroleum products, gas, and gas manufacture
distribution) into sector j and final consumption,
respectively, which can be determined as shown in
Appendixes A and B.

This paper specially focuses on MAC curves for
transport sector which shares around 25% of global CO,
emissions, mainly from fossil fuel combustion. At the
equilibrium, CO, emissions from the transport sector
(sector no. 7) for region r can be determined by eq. (7).
All composite prices in eq. (7) can be further determined
by eq. (8) to (13). All variables and parameters of the
equations are defined in Appendix A.

off 1—off 1-off 1-off
Co, B17047 7, ®180~18,7,rp1q,7,r ¢19“19,7,rp1q,7,r ®20a20,7,rpgs,7,r
7r = Off CO2 C02 CO2
(P17, +1020,7) Pig +1°9%015  P1g + 1292019 pyo + 19920y
1-o¢f (7)
o
®21 21,7,rpgs,7,r asfe acvae a Off —Ofe .. Ofe “Ovae ,,Ovae
C02¢ ff,7,r fe,7,r vae,7,rpff,7,r pfe,7,r pvae,7,rY7,r
P21 t7 21
1 + C02¢ X18,7,r + COZQ) %19,7,r
D _ <p18,r T 18) <p19,r T 19)
1q,7,r —
Big,7r Qg7 19,7, ®
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— | Off €02 ff o 1-0ff off 1-0of|1—0ff
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1
— Ofe 1-0fe Ofe 1-0fe\1—oy,
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From the equations above, we can see that the
emission of the sector is a function of emission factors
(@), CO, emission tax (7¢0?), production factors, all
prices related to fossil fuel, and the sector’s output (y ;).
Also, it can be said that the emission of a sector is
proportional to its output which can be obtained at
market equilibrium that depends on all prices and CO,
tax.

Fig. 5 shows conceptually the relationship between
the general equilibrium demand function (thick curve)
and demand functions (thinner curve) for CO, emissions.
The demand function is the emission level at a certain
level of CO, tax given the price of other goods and
inputs at a certain value. It will shift corresponding to
the change in given price level of other goods as shown
by the dash curves in Fig. 7. On the other hand the
general equilibrium demand function expresses the
emission level at a certain level of CO, tax given the
price of other goods and inputs at the equilibrium level
corresponding to the given CO, tax level. At a certain
level of CO, tax (1€02), therefore, we can determine the
crossing point between two curves where all price levels
are at the equilibrium level corresponding to the given
CO, tax level. The locus of crossing points is the general
equilibrium demand function.

The general equilibrium emission reduction function
is defined as the difference in the emission quantity of
the given level of CO, tax from the emission level of no
CO, tax case. The marginal abatement cost (MAC)
curves is defined as the inverse of general equilibrium
emission reduction function with respect to the tax level
of CO, which is shown as the CO, tax level for a given
level of reduction of the general equilibrium emission
reduction function. The total abatement cost is equal to
the area under the MAC curve, which is identical to the
deadweight loss (DWL) for a given CO, tax as

mentioned in Section 1 and shown in Fig. 2.

6. Comparing the Transport MAC Curves to the
Bottom-Up Approach

In practical, to generate sectoral MAC curves, we
imposed CO, taxes into the model and varied from 0 up
to 200 USD/tCO, and obtained corresponding CO,
emissions by sector by region. With having the

\ and inputs at a certain level of
\ CO, tax, 1°°2

CO, tax levels

Emission quantity

Fig. 7. The general equilibrium demand function and

demand functions for CO, emissions

coordinates of CO, emission taxes and associated
emission reductions, we can plot sectoral MAC curves
by region. Fig. 8 shows the derived MAC curves for
transport sector by region in 2020. It can be interpreted
straight forward that USA has high potential of CO,
emission reductions in transport sector, i.e. abatement
cost of CO, emissions is cheapest and much cheaper
than other countries (see Fig. 8 (a)). For developing
countries, abatement cost of CO, emissions in transport
sector are also cheap; particularly, China, India, Brazil
and a group of Middle-East countries (see Fig. 8 (b)). A
major reason of why the effects of the CO, emission
taxes are particularly strong in the USA but are very
weak in the other developed countries is that the fossil
fuel prices and taxes in the USA are very lower than
other countries. From key world energy statistics
published by the International Energy Agency'”,
gasoline price in the USA 1is cheaper than other
countries, e.g. gasoline price in Japan is more than two
times of the USA price. Thus, when we introduce a CO,
emission tax into the model, reductions in fossil fuel use
in the USA are very sensitive. As the technology (i.e.
represented by production function) of the transport
sector, specifically the substitution rate between capital
and energy for the USA and Japan are similar, then the
price level of fossil fuels could be the reason for the
difference of the sensitivity to the CO, emission taxes
between the USA and Japan. For Japan, fossil fuel taxes
are relatively high. With the same level of the CO,
emission tax with the USA, reductions in fossil fuel use
in Japan are very small. Also, energy efficiencies in
Japan, particularly

in the transport sector, are
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considerably high. It will be very expensive to reduce
more a unit of CO, emissions in the transport sector for
Japan. This is similar for other developed countries like
the EU-15, Australia and New Zealand.

The MAC curves derived from this study are then
compared to the GHG mitigation potentials based on
the bottom-up approach by the NIES. The CO,
reduction potentials in transport sector under 100 USD/
tCO, for six regions from the bottom-up study are
roughly read from the graphic. This comparison aims to
assess consistency of the MAC curves derived from the
different approaches only. Table 2 shows the result of
the comparison between the bottom-up model and this
study. The result showed that the ordering of the
regional reduction potentials from both studies is almost
same (e.g., the USA is the cheapest countries while
Japan is most expensive), expect for the ranks of the
EU-15 and China. The range of the reduction potentials
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Fig. 8. The derived MAC curves for transport sector by
region in 2020

Table 2 Comparison of CO, emission reduction

potentials in transport sector

Country Reduction Potentials (MtCO,) under 100 USD/tCO, %

S

Bottom-up Approach This Study difference
USA 234.0 399.4 +70%
EU-15 177.3 58.6 -67%
China 134.8 108.7 -19%
Brazil 67.6 55.4 -18%
India 61.5 49.7 -19%
Japan  56.7 15.8 -72%

from this study is wider (i.e., 15.8 — 399.4 MtCQO,), and
only the reduction potential of USA from is higher than
the bottom-up study. Also, the reduction potentials of
the EU-15 and Japan from this study are completely
lower than the bottom-up study (about 70% below). The
reduction potentials of developing countries including
China, Brazil and India from this study are quite same
as the bottom-up model’s results (about 20% below). In
addition, based on the results from this study, we found
that the abatement costs of the top-down study is not
necessary larger than the bottom-up study as noted by
previous studies””.

To clarify relative price effect and demand effect, a
relationship between fuel price with CO, tax and fuel
demand by the transport sector for the countries which
have big difference; USA, EU-15 and Japan, is shown in
Fig. 9. It shows that the influence of fuel price with CO,
tax to the transportation fuel demand is very strong in
case of USA and relatively weak in case of EU-15 and
Japan. Therefore, the price elasticity could be one of the
reasons why the reduction potential of USA is totally
opposite to those of EU-15 and Japan when compared
to the reduction potential by the bottom-up approach.

From the comparison analysis in this study, there are
main reasons behind the differences between bottom-up
and top-down modeling results. As mentioned that fuel
price and tax in the EU-15 and Japan are very high
comparing to USA. The change in price of fuel due to
CO, tax introduced will influence to change in demand
of transportation fuel slightly. This is opposite for the
USA’s case. Therefore, the price elasticity would be
reasons of the differences between the bottom-up and
top-down models, particularly, for the USA, EU-15 and
Another
substitution in the top-down model which is often

Japan. reason would be elasticity of
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excluded in the bottom-up sector analysis. This leads the
range of the reduction potentials by sector estimated by
the top-down model wider than those from the
bottom-up model. Therefore, it can be concluded that
the differences between bottom-up and top-down
approaches are larger when considering at the sector

level as same as mentioned in the IPCC’s AR4.

7. Concluding Remarks

In this paper, we described explicitly the equations
to derive MAC curves for transport sector by region
through using the multi-region multi-sector CGE model.
It found that the sectoral MAC curves derived from this
paper are the inverse of the general equilibrium
reduction function for CO, due to that it depends on all
prices in the economy including the emission tax given.
Moreover, the derived MAC curves for transport sector
for regions are compared to the GHG mitigation
potentials derived from a bottom-up study. At the CO,
tax level of 100 USD/tCO,, the ranking of the regional
reduction potentials in transport sector in 2020 from this
study are almost same with the bottom-up study, except
the orders of the EU-15 and China. The reduction
potentials from the top-down model are considerably
lower than the bottom-up model expect for the USA.
Nevertheless, the both studies also showed that the USA
is the cheapest countries and Japan is most expensive to

reduce CO, emissions in transport sector. The main
which

bottom-up and top-down modeling results by sector that

factors influence the differences between

could be concluded by this study are the price elasticity
and elasticity of substitution which are relatively
different among sectors. It would be also the reason of
why the reduction potentials by the top-down model are
wider than the bottom-up model. This conclusion
supports the issue noted in the IPCC’s AR4 that the

differences between bottom-up and top-down

approaches are larger at the sector level.
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Appendix A: Formulation of producers’ behaviors

Level Cost minimization Demand function
16
1 Xne,' = ane,'Yj VAE; aave,'Y]'
o j j j j
C]- = min PneXnej + pvae,jVAEj 16
=1 L=y = . . . .
-ne X Xnej X1 VAE c] p]Y] aVae,]pvae,] + Z ane,]pne Y]
s.t. yp=min 1=, — ., , ne=1
a1 Ane,j Q16§ Avae,j
Cj: production cost, Xy ;: intermediate goods input from non-energy sector ne to industry j, VAE; : input volume
of value-added and energy, ppe: price of non-energy commodity ne, py,e;: unit cost of value-added and energy
Input, apej, yae: input coefficient, p;: price of commodity j, yj : output volume
2 Value-added—energy (VAE) composite VA = [ VAE, FE. _ % Puie; VAE,
C_vae — : VA + .FE. ] ovae ] ovae
j = min pva'] j pfe,] j vaj fe,j
vae _
Oyae—1 Ovae—1 763::: Cj - pvae,jVAEj,r L
st. VAE;, = (a VA ovae 4 g, FE. 7V ) =
j,r va,j fe,j _ Oy, - Oy, 1—0yae \1-0
! - ( vaa]epva] * +0‘fee]1epfe] ae) e VAELF
C*¢: value-added—energy cost, VA; : input volume of value-added, FE; : input volume of fossil fuel-energy,
Pva,j Pfe,j: unit cost of value-added and fossil fuel-energy, a,;, O ;: parameters, Oy,e: elasticity of substitution
3 Value-added (VA) composite K = ﬁ‘,’apfg’j" VA, W, = f,’v"f‘pg;‘,,’j‘ VA L = f’]"api',;’? VA,
C/* = min p K; +pyW, +p L +p R ) P py v
S.t. Gvapﬂva Ova-1
r va, Oy, o
cy:,’a—l 6:,;,—1 c‘c,ra—l R]- = ;r ! VA ija = pva,jVA]' = | o aK va 4+
p— va va va
VA] = ak,j K] + (XW’]'VVJ- + alle]. i
o oya—1 oya—1 ova—1 ﬁ
Ova=1\Gyaml Uva‘W ova 4 ac"aL Va4 af}’aRj ova ) VA
- ,
bR o )
Cj"a: value-added cost, K; , W; , L, R : capital, labor, land, and natural resource input volume, py, Pw, Dj »
pr : unit rents for capital, labor, land, and natural resource, Oej> Oy Oj, Opj: parameters
Fossil fuel-energy (FE) composite a‘f’fffp‘f’e“; IO
fe _ . FF] = T ofe FE XZZ,] = GFE FE
Cj® = min pg;FF; 4 payXap; Py
1
Ofe
Ofe—1 Ofe~1\ oro—1 Cfe — FE: = ( Ofe Ofe + fe . 1—Gfe \1-0fe FE
_ ot ot j = Prejily = aff]pff] 032,jP22
s.t. FE; = (aff’jFFj + 02,%555 )
ije: fossil fuel-energy cost, FF; : input volume, X,,;: electricity input volume, pg;: unit cost of fossil fuel,
P22 price of electricity, o, 04, : parameters, og: elasticity of substitution
4 F(;fssil fuel (FF) composite . o5 F ot FF. LQ = LGPt FF,
¢l = min(p;; + rcoz(b”)xuj + Pig,iLQj + Pgs;GS; 17 = (py 10z, ) 1 ) ] 1;‘,
ofe- ot ogety I 85 Pry
aer o aehaes | oGS =SSR = pgFR = ol (pa +
s.t. FF; = 017,%;7; +a1q’jLQ]. +ags_jGSj GSj )
€02 1-0ff Off off Off [ 1-0ff |1-off
T%01)' 7 + oGP + OGPy ] }FF
ijf: fossil fuel cost, x;7;: coal input volume, LQ; , GS; : input volume, p;;: price of coal, 1¢02: CO2 emission
tax, @17: emission factor, pig i, Pgsi: UNIt COStS, 075, Ojqi» Oggi: Parameters, og: elasticity of substitution
5 Liquid fossil fuel (LQ) composite

Iq _ . COo2 co2
G;" = min (P1s +1°%@18)x155 + (P19 + 1992B10 )%y,
U‘m; 0‘19,1
st LQj = BigjXigf %49

%1g,Plq;j
_Tsiblai g
P1g+1C0201g Q]

lg _ -
G" = pig,LQ; =

Qg Qros
1 (pig+1°0%015\ 18 (p1o+16020,5) 1% LQ;
oo ]

19,]

®19,iP1q,j
P1o+1C02019

X18j = X195 = LQ;

Big,j

Qg

C;q: liquid fossil fuel cost, Xqgj, X;9;: 0il and petroleum products input volume, psg, pyo: price of oil and

petroleum products, T€°%: CO2 emission tax, @;5,019: emission factor, Biq.i, Aygi» %19: Parameters

Gas fossil fuel (GS) composite

g _ . co2 co2
(" = min (pzo +r Q)ZO)XZOJ + (p21 T @21)X21,j
O(20) O‘21,j
st GSj = BgsjXp05 Xa1 5

%20,jPgs,j
co2 GS]'
P20+159%05

gs _ —
C] = pgs,jGSj =

Oy i Qyqi
1 (p20+TC02®20> 20j (p21+TC02021) 2] GS:
Begs Az1j ]

021jPGs,j S

X = — .
21 P19+1C020 14 J

X20j =

%20,

Cg

gas fossil fuel cost, X,;, X5, ;: gas and gas manufacturing input volume, pyg, P21: price of gas and gas

manufacturlng, 1€02: CO2 emission tax, @,0,021: emission factor, Bggi, ®yqi, 0yq i Parameters
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Appendix B: Formulation of household’s behaviors

Level Cost minimization Demand function
1 0U = min pg, FE. + PpecNEc FE. = bgU NE, = b,.U
s.t. U = min {FEC , NEC} oU = (bfepfe,c + bnepne,c)U
bfe bl'le
U: utility level, bg,, bpe: share parameters, pg, Pnec: composite fossil fuel-energy goods and non-energy goods
prices, respectively, K, W, L, R: endowments of capital, labor, land and natural resource, respectively, p: full
income, 0 : unit expenditure or marginal utility of aggregate consumption = p/U
2 Fossil fuel-energy (FE.) composite Sfepte Hepote
gy ( c)- p FF, = it mf?LFE Xppo = zszé“FE
(er)FEc = min pff,cFFc + P22X22c P ’ Py
Ofe
Ofe— Ofg—1. ofe—1 o FE S(Dfep Wfe +8“’fep1 Wfe 1—wfe FE
s.t FE <6ffFF Ofe + SZZXZZC > e.c ( ff Fffc 22 F22 ) c
FE, : utility level from consuming fossil fuel-energy goods, O, 8,,: share parameters, X,,.: consuming volume
of electricity, pge: fossil fuel price, p,y: price of electricity, pg: unit expenditure of fossil fuel-energy goods,
Hre * =K~ Hpe
Non-energy (NE.) goods composite 5 p
16 _ 1 Fnec
X, = ——NE,
(h,e)NE; = Z Pi Xic Pi
£ 16 8
= 1 P
sit. Do cNE, = —1_[ Pi) Nk
16 ’ ne 4 5,
5 i=1 ic
NEC = Yne i,|c
i=1
NE, : utility level from consuming composite non-energy goods, Yy, 8; : parameters, X;.: consuming volume
of non-energy commodity i, p; : price of commodity i, Upe := 1 — He
3 Fossil fuel (FF,) composite 3oy Biq P
X17,c = ([JTWFFC L(QC = (ESFC FF
) FF, = +102¢ )x + LQ sOffp et
(ue)FF. = (py17 17)X17,¢ + PigcLQe GS, = P gy pir FF, [Smff(pﬂ
+ pgs,cGSc Pgs.c !
Off
i i 01\ og—1 co2 1-wgr wff 1-0¢f wff 1-wgr [1- ‘”ff}
st FF, (617x17c +0,LQ."T + 5,GS, T > TC020,,) 1N 4 Siple 4 S tpe | FF
FF. : utility from consuming composite fossil fuel, 8,7, 8)q, 8gs: parameters, wg: elasticity of substitution
among fossil fuel, X;7.: consuming volume of coal, LQ. , GS. : consuming volume of composite fossil fuel
liquid and gas goods, respectively, pi;: price of coal, pjqc, Pgsc: composite fossil fuel liquid and gas,
respectively, pg.: unit expenditure of composite fossil fuel goods, s := Uge — P22X22¢
4 Liquid fossil fuel (LQ.) composite 18P 19D
coz 815 Xi8e =51 cc% Q. X19¢ = 5 coqéq) Q.
(mg)LQ, = (P1s +T*?B1g)xyg" Pt ProTe e
L
+ (p + TC02®19)X;5;;C plg,c Qc s
5 5 1 pis + TCOZ(D 18 P1o + TCOZ(D 19
st LQ, = quxlgcxllg‘?c _( 18 18 19 19 LQ,
Yiq 518 819

LQ. : utility from consuming composite fossil fuel liquid, y,q, 815, 819: parameters, X;gc, X19c: consuming
volume of oil and petroleum products, respectively, pig, P1o: price of oil and petroleum products, respectively,
Pig,c: unit expenditure of composite fossil fuel liquid, pyq:= pg— (p17 + tcoz(bu)xuc — Hgs

Gas fossil fuel (GS,) composite 820 yc S 821Dy GS
Xp0e = — e Xl = — e
(Ugs)GS = (pzo + Tcoz@zo)xgéoc B8 gt O gy
’ Pgs,cGS
+(p21 + 1002 (2)21)X geme
2Lc oz 820 co2 821
st GS, =7 N 1 <p20 +T ®20> <p21 +T @21> GS
.t = — ¢
c gs,c720,c 21,c Ygs 820 621

GS, : utility from consuming fossil fuel gas, Ygs, 859, 8,1: parameters, Xpq ¢, Xp1,c: consuming volume of gas and
gas manufacturing, pyg, pz1: price of oil and petroleum products, pgsc: unit expenditure of fossil fuel liquid,
Mgs: = Mg — (p17 + TCOZ@U)XU,C — Mg
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Appendix C: The equilibrium conditions of the AIM/CGE Global Model

Zero profit conditions

1. Production of goods except energy:

16 1
L= a;:.D:i-+a . a"vae 1-Gvae +a‘5vae 1-6yae \1-0vae
PYjr ijrPir T Avaejr  Ova,jrPvajr fe,j,rPfe,jr
i=1

2. Armington aggregate of domestic and import goods:

1
1—0,A 1-of
A A 1-oM
A _ 0']' 1—0']' ]
Pjr = [Pir PYir + (1 - Blr B1sr
3. Household consumption demand:
1 b 16 Sir
_ Ofe fe Ofe _1-0fe\T—0fe ne,r pi'r
er - bfe.r(Sffrpffcr + 822 rPazr ) o+ | | <5. >
Yne,r =1 ir

Market clearance conditions
1. Capital:

Ova~—Ovae ,Ovae

22
a®v o0vae 4 pva,] pvae]
k]r va,j,r Ayae,j,r Oya Yjr
=1

pkr
2. Labor:
22 vaa Gvaep"vae
=\ gova Ovae Pvaj  Pvaej
WI' - Z O(w,j,rava,j,raVEleJ r Oya Yir
= Pw,r
]_
3. Land
22 Ova—Ovae ,,Ovae
L= Y ovagovae Pvaj  Pvaej
r al,j,r va,j,ravaeJl” Gva jr
j=1 plr
4. Resources:
22 Ova— Gvaepcvae
alvagovae o pva] vae)
r)r va]r Avae,jr Ova Yir
=1 Prr

5. Armington aggregate for non-energy goods (ne: sectors 1 to 16):
22 16 Bir

Ope D ; ’
Aper = Z AnejrYjr + e l_[ <?) Uy
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6. Armington aggregate for coal (sector 17):

22 Off—Ofe . Ofe ~Ovae  Ovae
G c G pff,j,r pfe,j,r pvae,j,r
A17 — o ff o fe oLvae i X
= 17,j,r £ j,r e jrdvae jr + €02 off YT
029
= (P17,r 17)

pwff_(’)fe Ofe
FF,c fe,c
+ 817 3¢ bye : a7 U
2 off ~r
(p17 +1€9204,)

7. Armington aggregate for liquid fossil fuel (1q: sectors 18 and 19):

22 1—-0ff Off—Ofe . Ofe —Ovae . Ovae
Ay = Z“ O Oregvae,  Plai PFEj Prej  Pyaej
qr — 19,j%1q,j ~ffj “fe,j “vae,j Cc0o2 jr
- aj1q, fEj “fej J Piq + 19204

pl—wffpwff-wfe Ofe
Off cOfe lg,c Fffc
+ B1981q Off  Dre

pfe,c
CO2
plq +1 (Z)]q

r

8. Armington aggregate for gas fossil fuel (gs: sector 20 and 21):

22 1—off Off—Gfe . Ofe —Ovae ,,Ovae
A — off  Ofe Ovae pgs,j pff:j pfe,j pvae,j .
gsr = ) OgsjOggiOjOfej Avae,] F C0zgy jr
= Pgs gs

pl—fﬂffpwf_f—wfe Ofe
Off ¢ Ofe gs)) ff,]
+ 8gsggs 8ff bfe

pfe,j u
r
s + TCOZ@gS

9. Armington aggregate for electricity (sector 22):
22

pcfe__ﬁvae Ovae
— Ofe Ovae fe,j
Agpr = § 052i%e,; @

Ofe
Pvae; p
)) Of fe,c
vae,j Ofe Yj,r + 6Zzebfe Ofe Uy
= P22 22
10. Household consumption:
W=t
"0

Income balance conditions

Ur = pk,rKr + pw,rWr + pl,r]-‘r + pr,rRr + TCOZQSOZ

(C9)
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The Riemann Zeta-Function and Hecke Congruence Subgroups. 11

Yoichi MOTOHASHI '

Abstract

This is a rework of our old file on an explicit spectral decomposition of the mean value

My(g; A) = /_OO C(3 +iat) [ |A(S +it)[* g(t)de

that has been left unpublished since September 1994, though its summary account is given in [9] (see also [11,

A(s) = Z apn”?®

is a finite Dirichlet series and g is assumed to be even, regular, real-valued on R, and of fast decay on a sufficiently

Section 4.6]); here

wide horizontal strip. On this occasion we add greater details as well as a rigorous treatment of the Mellin

transform

Zg(s;A):/ (5 1 it)[ AL + it)[* t2d
1

which was scantly touched on in [9]. In particular, we specify the location of its poles and respective residues,

under a mild condition on the coefficients «, .

Key Words : Zeta-function, Spectral theory, Hecke congruence groups

0. We shall proceed with an arbitrary A to a considerable
extent but later restrict ourselves to the situation where
o, 1s supported by the set of square-free integers. This is
solely to avoid certain technical complexities pertaining
to Kloosterman sums associated with Hecke congruence
subgroups which do not appear particularly worth deal-
ing with thoroughly, for our present principal purpose is

to look into the nature of Zs(s; A).

Our result on Z3(s; A) seems to allow us to have a
glimpse of the nature of the plain sixth power moment

Mg = [ el + )| g0ar
although we shall set out only certain ensuing problems
which are to be solved before stating anything precisely.
In fact, this motivation which was implicit in our origi-
nal file was similar to that expressed in [4]. Our approach
was, however, more explicit, being a natural extension
of our treatment of the plain fourth moment M>(g;1)
that was later published in [11].

As we noted at a few occasions, the reason of the
success with Ms(g; 1) lies probably in the fact that the

Eisenstein series in the framework of SL(2, R) is closely
related to the product of two zeta-values and in that
the group is of real rank one, with the observation that
the later is reflected in that the integral for My(g;1) is
single (as is inferred from the arguments developed in
e.g. [2][12]). Extrapolating this, we surmise that a prop-
er formulation of the sixth moment of the zeta-function
might be expressed instead in terms of a double inte-
gral, since the group SL(3,R) appears to be closely
related to the product of three zeta-values and it is of
real rank 2. Nevertheless, we shall consider Ms(g; A), as
it stands between the pure fourth and sixth moments
and requires less machineries than the plausible direct
approach to the sixth moment via the spectral theory
of L?(PSL(3,Z)\PSL(3,R)) such as proposed in [11,
Section 5.4].

There are at least three ways for us to proceed along.
The first is the argument that we took in [7][11], the
second is a representation theoretic approach developed
in [2], and the third is the one in [12] which is more
representation theoretic and in fact generalizes to quite a
wide extent. We shall take the first way, as we have

! Department of Mathematics, Nihon University Surugadai, Tokyo 101-8308, JAPAN ymoto@math.cst.nihon-u.ac.jp

www.math.cst.nihon-u.ac.jp/~ymoto/
Received 29 July 2009, Accepted 3 December 2009
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indicated above, for it appears to be the most explicit
and allows us to exploit best the peculiarity of our prob-
lem, i.e., the presence of the square of the zeta-function
in place of the first power of an automorphic L-function.
However, it should be stressed that the methods in [2]
and [12] have a definite advantage over that in [7][11];
see REMARK 3 in Section 15 below.

Convention. We shall assume throughout our discussion
that there exist no exceptional eigenvalues for any Hecke
congruence subgroup I'(q).

Thus all spectral data ; should be understood to be real
and non-negative. With this, we might not appear pru-
dent enough, but actually our discussion of Z3(s; A) is
not essentially affected by the assumption, though we
are aware of the possible existence of poles in the inter-
val(3,1).

REMARK 1. Readers are warned of a number of nota-
tional conflicts, none of which should, however, cause
any serious misunderstanding. We remark also that our
discussion contains details which must be often excessive
for experts; nevertheless, we do this because our old file
had been prepared for an abortive series of lectures to be
given to beginners, and we want to keep the original
style. By the way, there exists as well an abridged version
of the file that was to be included in [11] as its sixth
chapter, but the plan was put away because of a reason
which we can no longer remember.

REMARK 2. We do not mention any of works on mean
values of automorphic L-functions done in recent years,
notably by D. Goldfeld and his colleagues, some of
which in fact come close to our interest on Zp(s; A).
This is solely due to our wish to keep ourselves within
the framework of the unpublished file of ours; the neces-
sary updating will be made in our relevant forthcoming
works.

In passing, we stress that our work [8] (see also [11,
Section 5.3]) on Zs(s;1) was done without any knowl-
edge of the existence of A. Good’s work [5] on the Mellin
transform of the square of an arbitrary automorphic L-
function. His argument depends on a clever choice of
a Poincaré series, whereas ours exploits fully the pecu-
liarity of the Riemann zeta-function as indicated above
and produces results more explicit than his. We add that
our reasoning extends beyond Good’s situation. This is
a consequence of our latest work [12] lying on the lines
developed in [2], [7], and [11].

1. To begin with, we have

Qgcllpe

Ms(g; A) = Is(g;b/a), 1.1
9 %: o 2(g:b/a) (1.1)
(a,b)=1
where
> 1, \]4 it
Ig(g;b/a):/_ ’C(§ —Ht)] (b/a)*g(t)dt. (1.2)

To study the latter we introduce

I(u,v,w, z;g;b/a) = —i | ((u+t)((v—1t)
(0)

x ((w+t)¢(z —t)(b/a) g(—it)dt (1.3)

with (a,b) = 1 and Reuw,...,Rez > 1. Shifting the
contour to («) lying in the far right, we have

I(u,v,w, z;9;b/a) = —i/ coodt
(@)

+27r{§(u +v—1)¢(v+w-—-1)
X C(z = v+ 1)(b/a)" 2 g(i(1 - v))
+(u+z—1)C(w+2z-1)
x C(v — 2 +1)(b/a)*~g(i(1 — z))}. (1.4)

Thus I(u, v, w, z; g; b/a) is meromorphic throughout C*.
With this, we assume that Rew,...,Rez < 1 and shift
the last contour back to the original, getting

I(u,v,w, z;9;b/a) = —i/ coedt
(0)

—|—27T{C(u +v—-1)¢(v+w-1)
X ((z = v +1)(b/a)’ " g(i(1 — v))
+(u+z—1)¢(w+2z-1)
x (v =z +1)(b/a)*"g(i(1 - 2))
+(w—u+1)C(ut+v—1)
x C(u+z—1)(b/a) ""g(i(u—1))
H(u—w+ 1) (v+w—1)
X C(w+ 2= 1)(bfa) gli(w — 1))} (15)

In the vicinity of the central point p1 = (3.3.%,3), the
part in the braces is equal to

Clu+v—=1)C(v+w-—1)

X (1 ep(z = o) + ) (b/a) i1 — )
CI
+((u+v—-1) <1+<(u+v— 1)(z—v)+-~-)
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C/
C(v+w1)(zv)+~~)
Uiz(1+6E(U*2)+“')

x (b/a)"~' (1 + (logb/a)(z —v) +---)

x g(i(1 —v)) (1 - igg/(i(l —0))(z—v)+-- >

X ((v+w-—-1) <1+

X

—|—ﬁ(l—kc};(w—u)—ku-)g(u—kv—l)

X ((u+z—=1)(b/a) ""g(i(u—1))

+L(1+0E(u7w)+~')((u+vf1)
C/

x( C(qu’ufl)( u)+)

/

¢
x((u+z—1)(1+C(u+z—1)(v—u)+--->
x (b/a)'" (1 + (logb/a)(u — w) + -
xg(i(u—l))(l-i—zg((u—l))( —u)+-~->
— Clut v — D¢+ w — 1)(b/a)" g(i(1 — v))
¢ u+v— _¢ V4w —
<2CE_<( + 1) C(+ 1)
g .
L i1 - v))) £ (2 — o))
Gt v— DGt = — 1)(bfa) " gi(u— 1))

X (2CE—<<(u+v—1)—<<(u+z—1)

+logb/a + gl(Z(u - 1))) +O(lu — wl),

—logb/a +

(1.6)

where cp is the Euler constant. Hence, in particular,
I(u,v,w,2;9;b/a) is regular in a neighborhood of PLs
and we get

Iy(g;b/a) = I(p;;g; b/a)

(b/a) 2g (3i)
x {2cE — 2log 27 —log(b/a) + z‘gg(éi)}
— S (a/b)72g (i)

X {2cE — 2log 2w — log(a/b) — 2%(%2)} . (1)

The last two terms can be regarded as practically negli-
gible.

2. On the other hand, we have, in the region of absolute

convergence,

I(u,v,w,z;g;b/a)

1 .
2 o)

k,l,m,n

o bln
& akm

quv

bln
r;me z ( akm)’ (2.1)

G 5:1

where § is the Fourier transform of g; and (ak,bl) =
(a,l)- (b,k) =c-d, say; note that (a,b) =1. We have

I(u,v,w, z;g:b/a)

:C(U—‘r’l}) Z C'Uldu Z kullv

cla,d|b k,l,(k,01)=1
(a/c,)=1,(b/d,k)=1

1. bln/d
wnzg akm /C

1 U _Ju
fg(quv)avbu Z c’d

cla,d|b

1
Z kulv

k1, (k,1)=1
(e)=1,(d.k)=1

1 din
o (100 21
8 Z mon=? (og ckm)

Z c’d" J(u,v,w, z; g;d/c), (2.2)
cla,d|b

say.

Then we apply the dissection:

J(u,v,w, z; g;d/c)

={Jo+ Jy +J_} (u,v,w, z;g;d/c), (2.3)

where J_(u,v,w, z;g;d/c) = Jy(v,u, z,w; g;¢/d) and

JO(uav7waZ;g;d/C)

1 1
=4(0 7 — 2.4
oY T e
(ck.dl)=1 ckm=din
J+(U7anaz;g;d/6)
1 1 din
= Gg(log—|. (2.5
; kulv mzn mwnzg < 0g ckm) ( )
(ck,dl)=1 ckm>din
We have
Jo(u,v,w, z; g;d/c)
1 1
=g(0
(ck,dl)=1
o —z —w 1
=90 t2) Y p
Kl
(ck,dl)=1
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= 40)e (w4 2) Y e S0 )
K,

r|(ck,dl)
= §(0)c 7 d™"C(w+2) ) plr)

1 1
x Z kutz Z [vtw

r/(cr)lk r/(dr)]l
=9(0)e™*d " ¢(w + 2)¢(u + 2)((v + w)

X Z,u (e,r)/r)“T=((d,r)/r)"+™
=g(0 )C “d7C(w + 2)C(u + 2)¢ (v + w)
1 1
ST
1
X g <1 — W) , (2.6)

where p denotes a generic prime and the condition

(¢,d) = 1has been used. The contribution of

Jo(u,v,w, z; g;d/c) to I(u,v,w,z;¢g;b/a) is thus equal
to

0y —vpy—u S+ 0)C(u + 2)¢(w + v)((w + 2)
§(0)a Cu—l—v—i—w—i—z)
« ZC’”_ZH 'U+w
cla p|c - u+v+w+z

x Zdu—wn# . (2.7)

dlb pld 1- pu+v+w+z

3. Next, we shall consider the non-diagonal part J,.
We have

1
Z kulv

k,l
(ck,dl)=1

1 . ( din )
g (log
mwn? ckm

J+(’LL,U7UJ7Z;g;d/C) =

DIEDY

ckm dln+f
1

- Z kulv

kL
(ck,dl)=1

DD
’ ckaL;lTanJrf
B (ck)v
- Z kulv
(ck, dl) 1

1
2 X @i

f n
din+f=0 mod ck

(ck)¥ | Io din
(ckm)wn? I\ ckm

| din
Cdntf

SO K

k.l
(ck,dl)=1

1 F\ Y
X Z Z nw+z (1 + dln)

f n=—dlf mod ck
Jgllog |1+ Ea (3.1)
din

We then introduce the Mellin transform

s—1

g (s,w) :/0 g(log(1+x))mda§

w — s +it)

_ = I(
_F(S)/_oo T(wtit) 7

provided Rew > Res > 0. Shifting the last contour

()dt, (3.2)

downward appropriately, we see that g*(s,w)/T'(s) is
entire in s, w; and an upward shift gives that ¢g* (s, w) is
of rapid decay in s as far as w and Re s are bounded (see
[11, Lemma 4.1]). In particular, we have

J+(ua v, W, 25 g; d/C)
_(e/d)* 1
- 27-‘-2 Z ku—wl'u+w

k,l
(ck,dl)=1

DINDY

f n=—dlf mod ck

<[ st (L) e 6

with n > 0, which converges absolutely if

1

nw+z

n>1, Reu>Rew+1, (3.4)
Re (v+w) >n+1, Re(w+z) >n+1. .

On this condition, we have

J+(’U,7 v,w, z; g, d/C)
(e/d)™ / 1
271 ) 9 (S’ ’UJ) : : ku—w]vtw—s

k,l
(ck,dl)=1

1
> s

n=—dlf mod ck

1
XD
—f
c’zd’“’/ 1
= : g*(S,u})(Cd)s utz—sjvtw—s
21 (n) ; k + l +

(ck,dl)=1

X Z%C <w+zs,il]‘€f> ds, (3.5)
f
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where ((s,w) is the Hurwitz zeta-function. Classifying

[ into residue classes mod ck , we have

J+(’LL7 U, W, 25 9; d/C)
ku+zfs

7Zd7w
=¢ 5 / 9" (s,w)(cd
T S (k,d)=1

;zzlv;_s

h=1 [=h mod ck
(h,ck)=1

x((w—i—z—&—dhf)ds
ck

C—’L)—'lU—Zd—UJ

* 2ds
T Il

1
X Y. preTm
ku+v+w+z72s

(=1
h
D G
(hck)l
x ¢ (w +2z—s, —dc};f) ds. (3.6)

4. We are going to shift the last contour. To this end we
assume that there exists a large 71 such that n; > n+1

and
Re(v+ w) <m, Re(w+ z) <n,

(4.1)
Re(u+v+w+2z)>2(n +1).
On this and 1 < Res < m + ¢ with a small € > 0, the

sum
1
Z ku+1z+w+z—23

(k,d)=1
xzfs Z C(v—i—w sf]:>
(hck) 1
><C<w+zsch]j> (4.2)

is a meromorphic function of the five complex variables.
To see this we note that for any finite s

C(s,w) < |s — 1|7 4w Res 0<w<1), (4.3)

as it follows via an application of partial summation
to the Dirichlet series defining ((s,w). Thus (4.2) is,
provided neither v +w — s nor w + z — s is too close to
1,

< Z Re (Zs—u—v—w—2)+1

% (1 +kRe(v+w—s)) (1 +k_Re(w+z—s))

_ Z {kRe (2s—u—v—w—2)+1 + kRe (s—u—z)+1
k

+ k_Re (s—u—v)+1 + kRe (w—u)—&-l}’ (44)

in which we have

Re(2s—u—v—w—2)+1
<Re(2s) —2(m +1)+1,

Re(s—u—2)+1
=Re(s)—Re(u+v+w+2)+Re(v+w)+1
<Re(s)=2(m +1)+m+1,
Re(s—u—v)+1
=Re(s)—Re(u+v+w+2z)+Re(w+2)+1
<Re(s)—2(m +1)+mn +1,

Re(w —wu)+1

=Re(v+w)+Re(w+2z)—Re(u+v+w+2z)+1

<m 4+ —20m+1)+1; (4.5)
and the assertion follows.
With this, we shift the contour in (3.6) to (11). We

encounter poles at s = w4+ z — 1,v + w — 1; we may
assume without loss of generality that they do not coincide.
Before computing the residues, we note that

> ((s,hm/q)
(h’qz)zl
s) D oula/8)(8/(5,m))*~! (4.6)
dlq
To show this we use the functional equation
C(s,w) =2(27)"'T(1 — s)
X Z sin (s + 2mnw) n®~! (Res < 0). (4.7)
Thus, for Res < 0,
q
> (s, hm/q) = 2T (1 — s)(2m)*"
(ha)=1
? h
X Z Z sin (éﬁs + 27Tmn> n®t
q
n 1
= 2I‘(1 -5 (27r Usin ( Zcq (mn)n
= 2I(1 — s)(2m)* ' sin ($7s)
x0T Y bu(q/d)
n 6| (g,mn)
=20(1 — s)(2m)° "sin (§7s) (1 — s)
xS 6ua/8)(6/(6,m))* L, (4.8)

dlq
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with the Ramanujan sum ¢, mod ¢; and (4.6) follows via
the functional equation for ¢.

Let us compute the residue at s = w + z — 1. This is
equal to

2mi(c?d)v Tt *(w+zf 1,w)

x Z ku+11—UJ—z+2

(k,d)=1

h
XquHrzl Z C('U—Z-‘rl k)
(h, ci)l
=27i(2d)“ T gt (w + 2 — 1, w)
xCw+z—1)¢(v—2+1)
1 v—z
X Z kau+v—w—z+2 26 +1/L(0k/5)

(k,d)=1 8|ck
=2mic?W ot lqutaTlo® (4 2 — 1, w)

XxCw+z—-1)C(v—2+1)
X Z k-u w+1H< - v z+1>
(k,d)=1 plck
=2Vl qu Tl or (g 42 — 1, w)
X C(w—i—z—l)Q(v—z—i—l)
-1
1 1
x H <1 t a1 u w+1 < - pvz+l> (1 - puw+1) )
pted
—1
o) (=)
71 z+1 puwarl

XH<

Returning to (3.6), we see that the contribution of the
residue to Jy (u, v, w, z,;g;d/c)is

(4.9)

A gt (w4 2 — 1, w)
" Cv—z+1)C(w+2z—-1)((u—w+1)

Clu+v—w—2z+2)
1 1
pvferl
<1 :
ple \ 1= pitiw—ata
1
1- pu7w+1
<[ : (4.10)
pld \ 11— pitiw—ita
5. The residue at s = v + w — 1is equal to
2mi(c?d)v Tt *(v +w—1,w)
X Z ku—v—w+z+2
(k,d)=1
dhf
<3 g S (v

(h, ck) 1

=2mi(?d)* T gt (v +w — 1, w)
1
X C(Z Ch 1) Z ku—v—w+z+2

(k,d)=1
5 v—z
D ICID) P L

dlck f
as before. Here
(f.0)—*
Z f1)+u1 1

Y g ST (15

Al(S,6) plA

=C(v4+w-—-1) Z)\w+z1H< ) (5.2)
A6 p|A
and
Z—v 1 (f7 6)1172
Z(S " k/(s) Z f11+11)—1
Slck f
=C(v+w-—1) Z)\erle( >
Alck plA
XY (ON)TTU T u(ck/6N)
51(ck) /A
i 1
:(Ck)z +1C(v+w7 I)Z W
Alck
1 1
<1 o II (1- S ) (5.3)
plA pl(ck)/A
Thus

Z fu—v—wtz+2 25z T k/(s)z(fwzu 1

(k,d)=1 d|ck
_ z—v+1
=c C(U tw-— 1) Z ku—w+1 Z )\z+zu—1
(k,d)=1 Alck
1 1
x H ( pvz> H <1 - pzv+l>
plA pl(ck)/A
_ z—v+1 (C’ )\)U*UH”l
=c Cv+w—1) Z B v
(A, d)=1
1 1
x H < pvz> Z ku7w+1
p|A (k,d)=1

XH(I—

1 )
z—v+1
pl(ek)] (e \) p

= CZ_UHC(U +w-—1)
C )\ u—w—+1 ( 1 )
X 1-—
> (-

(A d)=1 pIA
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1 1
x H (1 + pu—w+1 (1 - pz—v+1)

ph(cd)/(e,A)

1 —1
x (1 - puw+1> )

1 1\
X H (1 - pzv+1> <1 - puw+1>
ple/(e,N)

_Cz—v+1 C(U+w_ 1)<(u_w+1)
N C(u—v—w+2+2)

. 1
pu—w+1
<1 1
pld 1—Zm
)\ u—w-+1 1
<y BT (=)
(nd)=1 PIx P
. 1
- z—v+1
< 1 r . (5.4)
ple/(en) | 1 —

pu7v7w+z+2

In the last sum we write A = A\; Ay with (A;,¢) =1 and
A2|c™; and we see that the sum is equal to

1
Cu+2) e
Caro Ll !
pled \ 1 ———
puTe
> (u—w+1) min(B,5) 1 ¢0)
p
T ()
(utz) vTE
pPlle \j=0 r ’
1 &£(B—min(B,7))
1=
z—v+1
) e ) (5.5)
1_

pu7v7w+z+2

where 1—¢ is the unit measure placed at the origin. One
could compute the last sum into a finite expression.

The contribution of the residue at s = v+ w — 1 to
Ji+(u,v,w, z; g;d/c) is equal to

A gt (v w — 1, w)
o vt 1)C(vtw—1)¢(u—w+ 1)¢(u + 2)
Clut+v)l(u—v—w+2+2)

1 . 1
pu—w+1
X H H 1
pled \ 1 — puto | 7l 1- pi v w2
< []¢) (5.6)
PPl

where the last product is as in (5.5).

6. Now let us turn to

Ji (u,v,w, 23 g;d/c)

C—U—?U—Zd—'u)

——— [ ¢ (sw)(Pd)’
2mi /(771)
x Z ku+v+w+z ZSZ]C‘S

ch) 1
h
Z ¢ <v +w —s, ck’)
(h,ck)=1
dhf
x((w—}—z—s,—dC) ds, (6.1)

where (4.1) holds. On noting that Re (v +w —s) <0,
Re(w+2z—s) < 0, we appeal to the functional equation
(4.7). Then the last double sum is equal to

FMl+s—v—wl'(l+4+s—w-—2)
(271-)2—1-25—11—2111—2

> Z m1)+w—s—1nw+z—1 (fn)—s

4

fmmn
ck
X hzl sm( (v+w—s)+27r&h)
(h,ck)=1
xsin { im(w+z—s)— 27r@%
2 ck
FMl+s—v—wl(l4+s—w-—z)

=2

(27T)2+257v72w72

% Z mv+w7571nw+271 (f’ll)is

fimn
X {cos (37(v — 2)) S(m, dfn;ck)
—cos (3m(v+ 2w + 2 — 25)) S(m, —dfn; ck) }

MNl+s—v—wl'(l4+s—w-—z)
(27r)2+257v72w7z

™ Z mv+wfsflnfsaw+27l (n)

m,n

X {cos (%w(v — z)) S(m,an; ck)

—cos (37 (v + 2w + z — 25)) S(m, —dn; ck) }, (6.2)

where S is the ordinary Kloosterman sum, and o, (n) =

ZMTL AT

Thus

Ji(u,v,w, 25 g;d/c)
cud%(u—i-v—w-i-z)

B 7ri(27r)“*w+1

XE m2 (vtw—u—z—1) —§(u+v+w+z—l)aw+z71(n)
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1 _
— cos (3m(v — 2)) S(m, dn; ck)
(k,%):zl Ck\/g (m) { ?
—cos (37(v + 2w + z — 25)) S(m, —dn; ck) }
xT(1l+s—v—w)l(1l+s—w-—2)
utvt+w+z—2s—1
x g% (s, w) <27T mn) ds.
ckvd

(6.3)
We put

§+(U7’U, w, z3 Z’)

1
= 5 cos (37(v—2))

x/ Frl+s—v—w)l'(l+s—w-—2)
(m)

X g*(s, w)(x/z)u+v+w+z—2s—1ds’
g_(u7 U7w7 Z;I)
1
=5 o cos (m(v+ 2w+ 2 — 25))
xD(1+s—v—w)l'(l+s—w-—2)

x g*(s,w)(z/2) Torwtz=2s=1g (6.4)
and

Yi(”)”awaz;g;d/c; m, n)

1 _
= ——8(m, £dn; ck
(k%:_l s (m n;c )

d\/mn
X.&i(’u?v)w?Z; Tr mn)
ckvd

n, £dm; ck:)

1
vl

(k,d)=1

4m\/mn
ivd > (6.5)

X §i<u7/v’w)z;
We have

3 (u,v,w, 25 g;d/c)
= [Ky + K] (u,v,w,2;g;d/c), (6.6)

with

K:I:(ua v,w, z;g; d/C)
Cud%(u+v7w+z)

(27T)u7w+1

1 1
% Z m§(v+w7ufzfl)nf§(u+v+w+zfl)gw+z_1<n)
m,n

X Yi(u,v,w,z;g;d/c;m,n). (67)

7. We need to spectrally decompose the sums Yi. To
this end we shall begin with some basic facts about

a generic discrete subgroup I" of PSL(2,R) and later
proceed to the Kuznetsov sum formula for the Hecke
congruence subgroup I5(q) .

Thus, let I" be a discrete subgroup of PSL(2, R) which
has a fundamental domain of finite volume. We calla a
cusp of I' if and only if there exists a 0 € I such that o
is parabolic, i.e., Tr(c) = 2 and o(a) = a € RU oo.
Let I, be {o € I' : o(a) = a}, i.e., the stabilizer of a.
Then Iy is cyclic, so all elements in it are parabolic.
Hence, there exits a o, such that o,(co) =a and
0a'Taoq = I'e = [S]with S = (' ]).

The discussion below depends on the choice of oy
which is not unique. If ¢/, is another choice, then there

exists a b such that o/, = 5,5°. In fact, since o5 ' Iqoq =

r—1 / -1 _ s qg+l,s-1 —1 7 g+1
o, Tho}, we have 0,80, " = 0,5 0, ~oro; oLS

= So;tol. On the other hand o, !0’ (c0) = co implies

mat 7zl — (+2); ana (+2) (*31) = (') (*2)

yields that @ = +c, that is, a = ¢ = 1 and the assertion
follows.

Let f be a I'-automorphic form of weigh 2k , with a
positive integer k; namely, for o = (Z Z) el,

Flo(2)) = (cz + d)* f(2)
= j(0,2)*" f(2). (7.1)

The function f(04(2))(3(cq,2))" ¥ is of period 1. In
fact,

f(0a5(2))(s(0a, S(2))) 2"

= f(0aSog " 0a(2)) (700, S(2)))

= f(0a(2))(3(0aS0;t, 0a(2)))* (300, S(2)) 7

= f(0a(2)) [2(0aS. 2) /(00 2)]*" (300, S(2)))

= f(0a(2) (304, 2)) 7. (7.2)

Thus, if f(o4(2)) is regular near oo, then the function
f(oa(log z/27i))(5(c4, log z/2mi))~2F is single valued
and regular on a small disk centered and punctured at
the origin. Hence

floa(2)(9(0q,2)) "2 = Z o(n,a) exp(2winz), (7.3)
which is called the Fourier expansion of f around the
cuspa.

Note that this expansion depends on the choice of
oq. In fact If ¢} is another choice , then o) = 0,5°
with a b. We have f(0/(2))(3(0a,2)) 2 = f(oa(z +
b))(9(oq, 2z + b))%k That is, o(n,a) is multiplied by
exp(2minb).



The Riemann Zeta-Function and Hecke Congruence Subgroups. I1

If f is regular on the upper half plane H = {z =
x+iy: —oo <z < oo,y > 0} and g(n,a) = 0 for any
n < 0 and any a, then f is termed a holomorphic cusp-
form. Let Si(I") be the space of all cusp-forms of weight
2k. Then Si(I) is a finite dimensional Hermitian space

with the Petersson inner product
(f,9)0e = F(2)g(2)y* dp(2),
I'\H (7.4)
dp(z) = dzdy/y*.
We let {¢; 1(2),1 < j < 9(k)} stand for an orthonormal
base of Si(I") .

8. Let £ > 2. We introduce the Poincaré series
P(z,a;k)
= Z (9o ty, 2)) " 2* exp(2mimag ty(2)). (8.1)
YELN\I"
This is a holomorphic cusp form of weight 2k for any
integer m > 0. We shall confirm this claim, though we
skip the convergence issue, which causes no difficulty
whenk > 2.

First, each summand is a function over I,\I'. In
fact, if I'vy = I/, then o 'y = o'y and
o7'v(z) = o719 (2) mod 1 as well as j(aUl v,z) =
](0_17’ z). Also the relation P, (v(2),a; k) =
(9(~, 2))%* P, (2, a; k) is obvious; and P,,(z,a;k) is reg-
ular over H. Thus, it remains to consider the Fourier
expansion at a given cusp b. We have

Pr(0(2), a5 k) (5(06, 2)) 7"
= D (006:2) (o 06 (2)) 7

YET NI
x exp(2mimoy 'yoy(2))

= Y (log"v0e,2)

yela\I'

1 az+b
S ——cexp (2mim . (82)
(cz + d)?k ( cz + d)
YELN\T

exp(2mimay; 1 yop(2))

where o yop = (¢ Z) If ¢ = 0, then o, y0p(00) = 00
or v(b) = a, that is, a = b mod I' as well as vo, =
04SP, Moreover, if 7'0y = 045", then +/(b) = a =
v(b), thatis, /v~ € I'; or I'yy = I,v'. Hence

> =dapexp(2mim(z +b)). (8.3)

YEL\T

=0

As to the remaining part, we have

2. = 2

YELN\I  y€l\I
c#0 c#0

cz+d

a
X exp <2m'm — 2mim
c

We observe that if o, yop, = a Z) appears in the right

side, then 0517055”0;101, = (ZZ?:?Z) does for all

n € Z. In fact, 'ya[,S”agl € I' and thus FavabS"ob_l
is an element of I,\I'. Moreover, if FavabSmo—b_l =
Fa*yobSnah_l , then cruFOOcr;LyobSmab_l
= Uafooaa_lvabsnagl or o, tyopS™ = SlaglfyabS”.

This means that

ab+am a+clb+an+ (d+ cn)l
= ; (8.5)
cd+cm c d+cn

and we get [ = 0, m = n, which confirms our claim. On
the other hand, since {y0,S"0, " : n € Z} = v}, we
should classify the summands in (8.4) according to the
double coset decomposition I'4\I"/I, which naturally

we could have introduced already at (8.2) .

We have thus

2 = 2 2@

2k
e eraiyn, @ EEn) £ d)
c#0 c#0
x omime — 2mi ! (8.6)
ex mm— — 2mitm—————— . .
P ¢ cle(z+mn)+d)

More explicitly, we have the relation v € I',\I'/T% is
Z) € I'no\oy ' I'oy /I . With this one
may proceed just in the same way as the case of the full

equivalent to (“

modular group and get

Pp(0(2), 05 k) (j (0%, 2)) 2

+ 27 (— Z{Z -S(m,n;c;a,b)

n>0 c>0

x (%)k_% Joh_1 <47NZW> }exp(?ﬂinz). (8.7)

= 0a,p exp(2mim(z + b))

Here

= Z exp (2mwi(am + dn)/c) (8.8)

S(m,n;c;a,b)

is a Kloosterman sum associated with I", where « runs
over the representatives of I,\I'/I, with the same ¢
in the sense remarked after (8.6). The expression (8.8)
and the constant b in (8.7) depend of course on the

choice of o4, 0p.
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The last summands are functions on I,\1'/ 1. In fact,
let I'vyIy = 4y Ty. Then o4l oooy yop ooy ' 3 7' or
I'woilvoe = 05y 06 s, which means that there exist
(‘; Z) = (‘; Z) S¥. Hence
c=c and a =d',d=d mod c. Also, for eachc > 0

two integers [, I’ such that S'

there are at most finitely many double cosets having c as
the lower-left element; otherwise the convergence would
be violated.

On the assumption that there exists a ¢ > 0 such that
for any non-zero integers m, n and any pair of cusps
a,b

1 .
Z Cz—k|5(m,n; ¢ a,b)| < (mn)°°, (8.9)

We have

P, (cp(0),a; k) =0, (8.10)

implying that P,, is a holomorphic cusp form of weight
2k.

9. We consider the spectral decomposition

(P (- a;k), P

ﬁ(k)

The left side is
/ Pr(z,a;k)
yerg\r’I\H

x (9o My, 2)) 2 exp(%imf; "y (2)y* dp(z)

-3 / (7 062, 0 k)

yE\I"

(5 05 F))k

,a; k) 7/’] k) k n(wb%k)ﬂ/)j,m' (9.1)

x (](Ub_ v, v Lop(2))) 2k exp(2minz)
_ ydpz)
l7(y~toe, 2)|1*

— Z /71 Pn(y ou(2), a5 k)
~ET\I o, Y(I'\'H)

X (3(y 0w, 2)) 7
= ou(2). a: —1 5 (5))2F
- Z Lblv(F\H) Pm( b( ),Cl, k)(.]('y ) b( ))

YEL\T

X (o, 2))
-y [, RGO

YEL\I'
x (300, 2))) 2" exp(—2minz)y**dp(2)

P,.(0p(2),a; k)

exp(—2minz)y**du(z)

exp(—2minz)y* du(z)

/U,,l Usergar 7(0\H)

* ()06, 2)))~*F exp(—2minz)y** dpu(z)

/ /P (00, 0 1) (10, 2))) 2

x exp(—2minz)y** 2 dzdy

=27T(2k — 1) (4m/mn)' =2k

1
x{2ﬂ5a b0m,.n €Xp(2minb) + Z S(m,n;c;a,b)
X Jok_1 <471‘ \/Tcm) }, (92)

where we have used that o, ! U erprYy'\H) =
0y H(Ie\H) = I'o\'H ; in fact, since oy ooy (I \H) =
H, we have I'oo, ' (Iv\H) = H

On the other hand, we have in much the same way
) O k) 1;[]] k>
/ / exp(2mimz)Y; k(0a(2)))(0a, 2) "2k dpu(2)

=T'(2k — 1)(47m)' =g, x(m, a),

(9.3)

where we have put, following (7.3),

wj,k(aa(z))J(UmZY%

= Z 0j,k(n, a) exp(2mwinz).
n>0

(9.4)

Hence we have obtained the Petersson Formula:

Lemma 1. Fork > 2

(k)

L D2k 1) Z@a, (m, )0,k (n, b)

27 (4 /min)2h—1
1

= %5”’ Om,n €xp(2minb)

1
—1)* Z ES(m,n; ¢ a,b)Jag—1 (47r

@) . (9.5)

provided I satisfies (8.9).

The case £ = 1 can also be treated in much the same
way as is done with the full modular group (see [11,
pp- 52-54]), excepting that (8.9) should be replaced by
the assumption that there be a constant T < 2 such that

for any non-zero integers m, n and for any pair of cusps
a,b

1 ,
> —1S(m, i 0,0)] < [mn|. (9.6)

C

On this the assertion (9.5) holds for all & > 1.

10. We turn to real analytic cusp forms. The procedure
is similar to the holomorphic case and also to the full
modular situation, and we can be brief.
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Let f be a real analytic cusp form of weight zero with
respect to I so that f(v(z)) = f(z) for all v € I', and
Af =vfwith A = —y*(92 + 07). Since f(o4(z)) is of
period one, we have the Fourier expansion

Foa(2) = 3 oln,asy) exp(@ring).  (10.1)
We require that
lim f(oq(z)) =0 for any a, and
(10.2)
[ IPauts) < oo
I'\H
We have then
f(oa(2))
=y2 Z o(n, a) K, (2m|nly) exp(2minx), (10.3)
n#0

where v = k2 + Z'

One may consider more generally the decomposition
of the space L?(I'\G), G = PSL(2,R
subspaces and appeal to the theory of representations

) into irreducible

of the Lie group G. This will allow us to deal with all
cusp forms of various weights in a unified fashion.
However, here we shall rather follow the argument due
to Kuznetsov and others.

Thus, let us introduce the Poincaré series of the Sel-
berg type
Un(z,a;5)
= Z (Imog'7(2))” exp(2mimog 'y(2)), (10.4)
YE Fu\F
and the Eisenstein series E(z,a;s) = Uy(z; a;s), associ-
ated with the cusp a. Arguing as in Section §, we have
the Fourier expansion

Um(0p(2), a;8) = 0q,6y° exp(2mim(z + b))
1
—l—yl_sZexp(Zm'nm)Z T S(m,n;c;a,b)

c

e ) 2rm dg
[ o (oo i) e

On the assumption (9.6), U,,(oy(2), a; s) is regular for
Res > 7/2, and also U, (0p(2),a;s) < y' R as y —
oo. In particular, Uy, (z,a;s) € L2(I'\H) if Res > 7/2.
Also we have

E(op(z),a;5)

(10.5)

I(s—1)
_ S 1—s 2
- 5a,by + ﬁy F(S)

y Z|n\ “3e,(s:a,b)

n#0
X K#% (27|n|y) exp(2mwinx),

eo(s;a,b)

(10.6)

with

1
en(S; a, b) = Z Ci

c

5(0,n;a,b). (10.7)

It can be shown that F(op(2), a;s) is meromorphic for
all s. Moreover, in the case of congruence subgroups,
E(0e(2),a;5) is regular for Re s > % except for a simple
pole ats = 1.

Let {¢; : j > 1} be a complete orthonormal base of
the cuspidal subspace of L?(I"\'H) such that Ay, = v;1);
with v; = k% 4 1, and

¥j(oa(2))
=y? Z 0;(n, a) Ky, (2mInly) exp(2minx). (10.8)
n£0
We put also g = (volume of F\H)fl/z. We suppose
that I" is such that no E(z, a; s) has poles in the interval
(%, 1). Then we have the spectral expansion: For any

pair f, g € L>(I'\'H), it holds that

[e.°]

<fa g> = Z<f7 ¢j><ga¢j>

J=0

%Z/_oo E(r,c; f)E(r,c; g)dr, (10.9)

where (-, ) = (-,

o and

E(rye; f) = e f(2)E (2, ¢ % +ir)du(z).

(10.10)

11. We collect here analogues of Bruggeman’s and
Kuznetsov’s formulas: On the basic assumption (9.6)
we have:

Lemma 2. Uniformly for any n # 0 and a,

3 i
cosh 7k

< K? + |n|*,

Z/ len (3 —&—zrca)‘ dr

(11.1)

where ¢y depends on T, ¢y in (9.6). In particular, we have
the bound

0j(n,a) < (kj + |n\ )exp( ’/Tlij) (11.2)



Y. MOTOHASHI

Lemma 3. Let h(r) be even, regular and of fast decay on
the strip [Imr| < § +n with an n > 0. Then it holds that
foranym,n > 0anda,b

i 0j(m, a)g;(£n,b) h(rs)

cosh Tk

j=1

i o) UK

X em (% +ir;c, a)en (% +ir;c, b) h(r)dr

o0

1

:ﬁémhémin exp(2mimb) [m rtanh(7r)h(r)dr
1 vmn
=S +n;c; hyl4 11.3
+;C (m,£n;c;a,b) i<7r . >, (11.3)
where ¢ runs over all inequivalent cusps, and
20 [ rh(r)
hi(z) = . [m m«bir(ﬂf)dﬂ
(11.4)

h_(z) = % /_00 rh(r) sinh(7r) Koy (z)dr.

Lemma 4. Let ¢ be smooth and of fast decay over the
positive real axis. Then we have, for any m,n >0 and
a,b,

c

Z %S(m, +n;c;a, b)cp(47r : mn>

_ Z Qj(mV a)gj(:tn7 b)gbi(ﬁj)

cosh Tk

1+1
I'(2k)o
+47r(47r\/72k 12

(k)

X Z Qj,k(m7 a)Qj,k(na b)

+ ;Z 1 :(n/m)”

X em (5 +iryc,a)e, (3 +ire,b) @u(r)dr, (11.5)

+((3 —2k) 1)

where
6) = o [ o) = Tan o)} () 2
@_(r) = 2cosh(nr) /000 KgiT(x)go(x)d%. (11.6)

12. With this, we shall consider the specialization I" =
I'b(g). Our discussion overlaps, to a certain extent, with

that developed in [3]; however, the present work can be
read independently of it. In this section we shall fix a
representative set of all cusps inequivalent mod Ip(q).

We introduce V = {(! ,):n € Z}the stabilizer of
the point 0 in I5(1) and the double coset decomposition

1) =J (@)Y,

(12.1)

where the symbol a is to be regarded temporarily as to
be just a label. We begin with a particular ~y,, and trans-
form it to a matrix suitable for our purpose. We thus
look into the product

(e o) (5 1) ()
06

where the middle matrix on the left side corresponds to

(12.2)

~q- It is to be observed that g is fixed mod h, because of
the action of V. We assume that h # 0. We have

= ¢fq+dh, and we claim that this can be made equal
to ( h). In fact ¢(fq/(q,h))+d(h/(q,h)) = 1is soluble
in ¢ and d, for (fq,h) = (¢,h); then d = h/(g,h) mod
fa/(q,h), and d can be a prime large enough so that
(d,q) =1, and thus (d,cq) = 1. With such a d we may
choose a, b to satisfy ad — beq = 1, which confirms our
claim. On the other hand, if A = 0, then it suffices to
put ¢ = sgn(f), d = 1. Thus we may suppose that v, =
(£ ) with w|g; that is, each coset in (12.1) contains

* W

elements of this property.

We then apply (12.1) to the point 0, getting

QU {oo} = JT0(9)74(0). (12.3)

This means that {v,(0) :
nition of a, is the full set of inequivalent cusps mod
I'v(g). In fact, that Io(q)v4(0) 3 74 (0) implies read-
ily that I'h(q¢)v.V = Io(¢)veV; and the stabilizer in
Io(q) of 7a(0) is YaVyywya ' with Vy = {(} ) : d|n},
provided 7o = (I). The labels {a} indeed coin-

it should
be noted that the element w is unique to each dou-

a}, with the current defi-

cide with their former designation. Also,

ble coset, which can be proved by considering the re-
lation Io(q) (52)V = Iolq) (X
either modw or modw’, getting w|w’ and w'|w, re-
then Io(q) (Z)V N

») V with respect to

spectively. Namely, if w # ',
Lo(a) () V =10.
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Hence, it remains to see when the relation

Io(q) (; f;) V= Io(q) (;ﬁ

holds, where the two matrices are in (1) with w|g and

{:) Vo (12.4)

(99’,w) = 1. We have

a b e f e f 1 .
(22 0)-( )G ) v

a b\ _[(e+nf f w  —f

c d) \g+nw w —g e

c=w(g +nw)—gw=w(g — g+ nw)

w(g’ — g+ nw) =0mod ¢
g —g+nw=0mod q/w

[

g = gmod (w,q/w). (12.5)

Hence

(124) —

(99',w) =1and g = ¢’ mod (w,q/w). (12.6)

Namely, when ~y, varies with w fixed, then g and thus f
runs over the complete residue classes mod (w,q/w)
while satisfying (w, f) = 1. If (u, (w,q/w)) = 1, then
obviously there exists an f such thatu = f
mod (w, ¢/w)and (w, f) = 1.

Collecting the above, we have

Lemma 5. A complete representative set of cusps inequiva-
lent mod Iy (q) is given by

{% : wlg, (u,w) =1, u mod (w,q/w)}7 (12.7)

whose cardinality is

> el(w,q/w)). (12.8)

wlq

13. Let us fix the stabilizers of those cusps given in
(12.7). To this end we note first that if a # oo is a cusp of
a discrete group I', then

Fa:Fﬁ{(ltya

In fact, since (aa +b)/(ca+d) =a,a+d =2, we see
that a = (1—d)/c, and the assertion follows with ¢ = v.
Ifa = u/w with w|g, (u,w) = 1, then

1—va

—ve’ ) : Z/E]R}. (13.1)

Fu/w
2
1+v— —VU—Q
=Io(q) N w wu veR;, (13.2)
v 1—v—
w

and thusv € Z, v = 0mod ¢, v = 0 mod w?; namely

14+v— —yu—z
Fu/w = w w y (133)
u
v 1—v—
w
with Z > v = 0 mod [w?, q].
We write
q =vw = (v,w)*v*w*,
. v . w (13.4)
Vo= , =
(v, w) (v, w)
We put
uu — 1
u
Wy /w , wu=1modw, (13.5)
w u
and
//U*
Ty = L. (13.6)
//U*
Obviously we have @, /,(00) = u/w. Moreover, we
have
2
1+v— —yu—z
w;}w w w D
u
v 1—v—
_ w 2
Cuu—1 14 U 7Vu72
= w w w
u
—W u 14 1—v—
w
ua — 1
u
% w
w u
v
(' Tw
1
1 - *V 2
= T+ vtw 7'1;1, (13.7)
1
Hence, on noting that [w?, q] = v*w?, we get
Dujw = wu/wTU*er;lw;}w , (13.8)
which is equivalent to
Luje = Tusu {S” } @l (13.9)
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14. In the the special instance where ¢ = v;w; with
(vi, w;) = 1, we shall consider the structure of the double
coset decomposition I s, \I0(¢)/I'1 juw, and associated
Kloosterman sums.

To this end we put
_ S*wi/vi
O1/w; = Wi /w; Tv;
= wl/wisfmﬂ)i, (14.1)
where w;w; = 1mod v;. The choice of a particular val-
ue of w; is irrelevant to our discussion of the Klooster-
man sums, as we shall show later. Note that

Fl/wi = Ul/wiFooal_/lwi s (142)
as is implied by (13.8).
We shall prove that
s w;/lwlro(Q)wl/wQS_w2
(’Ul,wg)k (Ul,vg)l
= € SL(2,Z) ; (14.3)
(w1, w2)r  (w1,v2)s

with k,l,r,s € Z (cf. [6, p. 534]; note that there ¢ is
square-free but here not assumed to be so). In fact, we
have, by (13.5),

. 1 T,
@1 ST = (wi ) _iwi); (14.4)
thus for(’ifl) € Iv(q)
Wi, — a b —w
S 1/1u;1 <C d>w1/w25
_ (0 x a b * %
s % 0 d 0 =
=, ,)mo (v1, wa),
_ ({0 =« a b %
“\lx o« 0 d * 0
0
= (I *> mod (vy,v2),
_[(* x a b * %
T \0 % 0 d 0
= <(>; I) mod (wy, wa),
(% % a b * %
“\0 x)\0 d)\x 0
= (: ;) mod (wy,vz) (14.5)

On the other hand, we have that

- (1}1,’(1)2)]5 (017/02)1 o
'(31/11115774}1 Sw2w1_/1w2
(w1, w2)r (w1, v2)s

_ [ x x 0 = * %
“\lx 0 % % 0 =
% %
= (O *) mod (v, ws),
_(* * * 0 0 =
“\x 0 * ok * %
= <8 I) mod (’01,112),
_ [ * % % % % ok
—\0 = 0 =x* 0
= (; :) mod (wy,ws),
A * ok 0 =
=\0 x* 0 % %
* %
= (0 *> mod (wy, v2), (14.6)
and that (vy,ws2)(v1,v2)(wy,ws)(wi,v2) = ¢. This
proves (14.3).
Hence, we have, with k,l,r,s € Z,
Fl/wl\FO(q)/Fl/wz
= Ul/wlrooal_/lwl\FO(q)/Ul/Uu Foool_/lwz
<
Foo\TgllSwlwl_/lwlFo(q)wl/wzsfw%'vz/l—'oo
<~
(U17w2)k (Ul,UQ)l
I\t € SL(2,Z) p Tu,/Tno
(w1, wo)r (wy,va)s
<

(’Ul,’wg)k'\/vg/’ljl (Ul,Ug)l/,/’Uﬂ)Q

(w1, wo)ry/v1v2  (wy,v2)84/v1 /02

<~

classifying the solutions of

(v1, we)(wy,v2)sk — (w1, wa)(v1,ve)rl =1
according to (vi,wa)k/va/v1, (w1, v2)s1/v1 V2
mod (wy, we)r/v102; note the remark after (8.6)
<~

the moduli of the Kloosterman sums

have the form (wy,ws2)r/v102

with ((v1,ws)(w1,v2),7) =1 and

(v1, w2)(wy,v2)sk =1 mod (wy, ws)(vy,v2)r

(v1,we2)k mod vq (wy, wa)r
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—— k mod (vy, ve) (w1, ws)r
(w1,v2)s mod va(wy, ws)r

—— s mod (v1,v2) (w1, we)r
—
¢ = (w1, w2)r\/v1v2, ((v1,ws)(w1,v2),
S(m,n;e; 1w, 1/ws)
=Y exp (27”’“”“”‘5)>

(v1, v2) (w1, wa)r

= S((vy, w2)m, (w1, va)n; (v1,v2)(wy, we)r),

=1,

(14.7)

where the last sum is over s, k mod (vy,v2)(wy,ws2)r,
(v1, we)(wr,va)sk =
last member is an ordinary Kloosterman sum.

1 mod (vy,v2)(wy,ws)r, and the

It remains to show the irrelevance of the choice of
values of w;. In fact, if we replace w; by w; + nvj,
n €7,
does not change, for we have o, Lgnvir,

then the first equivalence assertion in (14.7)
, =8" €.

In particular, we find that if ¢ = cd, (¢,d) =1, and
(r,d) =1, then

S(mm;cr\/g; 1/q,1/c)
= S(m,n;cr\/g;oo,l/c)

= S(m,dn;cr), (14.8)

on the specification (14.1) of oy /4 and o ..

15. We still need to see if (9.6) is satisfied by the generic
I'v(g). Until very recently we had been unable to locate
any rigorous treatment of those generalized Kloosterman
sums over Io(q) in literature, excepting [9] and [10]
where the case with ¢ square-free is explicitly discussed
on the basis of (14.7). With this situation, R.W. Brugge-
man kindly provided us with a treatment [1] of the sums
using a partly adelic reasoning; and it is assured that
(9.6) indeed holds with any I'h(q). Here we shall prove
the same with an alternative elementary method; this
section can be read independently of [1].

We shall first redefine the Kloosterman sums associ-
ated with the two cusps u; /w;, ¢ = 1,2, which are in the
set (12.7), by introducing the convention

Oy, Jwi — Wy, Jw; Tv: ) (151)

with v; as in Section 13, which is effective within this
section only. Note that when w; = 1 this does not
coincide with (14.1); when discussing the absolute values
of generalized Kloosterman sums, obviously no differ-
ence is caused. Also, it is expedient to use the Bruhat

decomposition; that is, in the big cell of PSL(2,R) we

have
( > (1 a/c> ( —1/c> (1 d{c)
Bla,d; ], (15.2)

say.

With this, let »¢; be the characteristic function of the
set [H(q) € PSL(2,R

ated with the two cusps u;/w;, i = 1,2, have moduli
cy\/vjvs, ¢ € N; and under (15.1) we have that

). Then Kloosterman sums associ-

S(m,n; er/vivs;ug Jwy, us/ws)

= Z %q (wul/wl [a d C} uzl/l,UQ)
ad=1 mod c
a mod vic
d mod vic
.(ma nd
xexp|2mi|—+— ], (15.3)
Ulc 'U2

where a,c,d € Z. In fact, by (13.8) we need to consider
the double coset decomposition

oo\T wull/wl Iy (Q)wug/ngv; /Foo
= <>C\7';T {B[a,d; q :

%‘I(wul/wl [a d C]

o) = 15 Toc

=L\ Blay/vs /o1, dyfoi fuss e/o5us |

P C B[a,d,c]ww/w)zl}/ﬂx), (15.4)

uy /wy

where Bla,d;c] € I(1), since w;ll/wlFo(q)wuz/w2 C
I'p(1). The expression (15.3) readily follows. In passing,
we note that

[S(m, n; e/ vivg;ur /wy, ug/we)| < vivie(c), (15.5)

for the number of summands on the right of (15.3) is less
than or equal to vivip(c). In fact, a unique d mod ¢
corresponds to each a, (a,c¢) = 1, or v3 classes d mod
vsc to each of v]¢(c) classes a mod vjc with (a,c) = 1.

We remark that ¢, (wul/wlB[a, d; C]w;;/u,z) is a
function over a mod vic and d mod v3c. To see this, we
use the relation

wul/wlB[a—i-a d+d;dw —1

uz/’u}z
1 a'/c _
= Wuy Jwy ( 1/ ) wull/wl . wul/wlB[a, d; C]
—1 1 d//C 1
X Wy Wiz fwa ( 1 o w2} (15.6)
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and (13.9) gives that
1 d/c _
CUul/wl ( {/ > Cqu/wl = IL1/w1 C:Ib(q%

1 d/e _
Waus /we < 1/ )wu21/w2 S Fug/wz - FO(q)v (157)

provided vi|(a’/c) € Z , v5|(d'/c) € Z , which proves the
assertion.

Next, we shall show that if ad = 1 mod ¢, then
P2 (wul/wlB[a, d; c]w;;/w)
) . (15.8)

where ¢ = ¢oc* with ¢g = (¢,¢*), and c*c¢* = 1 mod ¢;

_ _ ) -1
=5, (wc*ul/wlB[a7 d; co]wcjuz/w2

note that c*u; /w; are cusps of Ip(¢). In fact, computing

the lower-left element of w,, /., Bla, d; c]w;zl/w, we see

that the value of the left side of (15.8) equals 1 if and
only if

g (awy + cuq)

= ws (w1 (ad — 1)/c + duy) mod g; (15.9)

and this is equivalent to the congruence

c*ug(awy + coc*uy )
= wy (w1 (ad —1)/co + dc*uy ) mod ¢, (15.10)
which immediately implies (15.8).

Hence we have
S(m, n; e\/vivd;ug /wy, ug/we)
1
= Z , (wc—*ul/wlB[a, d; CO]wFuQ/wz)

ad=1 mod ¢

a mod vjc
d mod vjc

d
X exp <27m' (ma + X )) . (15.11)
vlc U2C
Here we have
1 o *
— =5 5% 61, (15.12)
v;c v; Co c*

with c~;‘c* = 1 mod v;¢g, lgc/ovfco = 1 mod c*. Inserting
this into (15.11), puttinga = ag mod vicg, a = a*mod
c*,d = dpmod vicy, d = d*mod c*, and further, noting
the congruence property of », proved in (15.6)—(15.7),
we may write (15.11) as

S(m,n; C\/@Wl/wuuz/wz)

ad =1 mod ¢
a mod vic

d mod vjc

. é:*mao g‘ndo
x exp [ 2mi [ M0 | GNdo
V1 Co Uy Co
[ vicoma®  vicond*
X exp <2m < L + 2 .
c* c*

. —1
Xq (wci*ul/wlB[aO’ do, Co]wci"ug/wg)

We have thus obtained the factorization

S(m, n; e\/vivs;ur/wy, uz/we)
=S(c~im, gﬁn; Co/UIUE; cFug fwy, CFug fws)
x S(vicom, vicon; c), (15.14)

where the last S-factor is an ordinary Kloosterman sum.

In particular, applying (15.5) and the Weil bound,
respectively, to the first and the second factors on the
right side of (15.14), we get

|S(m, n; e\/vivg;ug /w, ug /ws)|
< viusp(eo)|S(vr com, vieons )|

< vivieo((myn, ¢*)c*) 3 e, (15.15)

with the implied constant depending only on . Thus we
have, for any £ > 3,

1
—————18(m, n; c\/viv3; ur /wi, uz /wa)|
Z (c\/vivs)"

c

v s l_1lr 1 m,n,c§
<<('U11)2)1 2 Z pras <Z 7( CT—E) >7(15.16)

clg*® c

which is finite if 7 — £ > 1. Therefore, we have proved
that any Io(q) satisfies (9.6) with 7 > 2.

REMARK 3. The methods in [2] and [12] extend to
Ms(g; A) with an arbitrary A. Since they are independent
of any non-trivial treatment of generalized Kloosterman
sums, the above confirmation of (9.6) for generic I(q)
could be regarded as redundant, as far as the spectral
decomposition of Ms(g; A)is concerned.

16. With this, we return to the second line of (6.5).
We stress that hereafter we shall again work with the
definition (14.1).

In view of (14.8) we have

Yi(u,v,w7z;g;d/c;m,n)
1

= Z ——S(n, +m; ckVd; 00,1/c)
(bt ckvd
. w/mn)
X u,v,w, z;4dn—— | . 16.1
g ( ck\/d ( )
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Thus Lemma 4 gives the expansion

Yi(u,v,w,z;g;d/c;m,n))
— Z[g} Koy Uy U, W, 2) Qj(nvoo)gj(im71/c)

cosh k;
1+1 '
t (A ) 1 Ar (47 /mm) 2k 1 ZF (2k)] 3 — 2k)i;u,0,w,z)
9(k)
x Z 2j.k(n,00)0j k(m,1/c)
j=1

riu,v,w, 2)(m/n)"

S N

X €n (% +ir;c, oo)em (% +ir;c, 1/0) dr (16.2)
where
[g]+(7“;u,v,w,z)
dac

— J g (@)} g4 (uy v, w, z;2) —

= J ir
2Sinh7rr/o {2ir(2)

9] (5 u,v,w, 2)

° d
= 2cosh(7rr)/ Kgir(x)g_(u,v,w,z;x)% (16.3)
0

Further, by (6.6)—(6.7) we have that

(27r)u7w+1
WJ+(U v,w, 2 g;d/c)

+ j=1
Z Q O'w+z 1( )
%u+v+w+z 1)
Qj(:tna 1/6)
X l(ufvfw+z+1)
N

1 & 21:-1 )
5 s 91+ (5 = 26) 0, v, 2)

Q ,k 0w+z 1(”)
n

+(Kj;u,v,w, 2)

cosh ik

X { 7% %u+v+w+z 1)
m
0j,k(E£n,1/c)
- 2n2(“ v—w+z+1)
1 ()O
+722 +(r;u,v,w, 2)
(e oo

en(z +ir;e, oo)anrZ 1(n)
%u+v+w+z 1)4ir

en(§ +ir;c,1/c)
x {; n%(u7v7w+z+1)fir dr’ (164)
as Lemma 2 and the rapid decay of [g]+(r;u,v,w, 2)
yield absolute convergence on the right side, provided
(4.1) (see [11, Section 4.5]).

17. We need to continue (16.4) to a neighborhood of

the point (u, v, w, 2) = (é, %, é, 2) The continuation of

[g]+ is known already ([11, Section 4.6]), and we are
concerned with the nature of L-functions:

(s;1/c) = ZQJ (£n,1/c)n™7,

a) = Zgj n,00)oq(n)n=?,
Zgﬂc (n,1/e)n=""k+3,

ZQJ’“ (n,00)04(n)n~5"F3 (17.1)

ij S; 1/0

Jksa

where the sums converge absolutely if Re s is sufficiently
large, because of (11.2). We shall especially require
uniform bounds for these functions. The Dirichlet series
involved in the last integral are to be discussed in detail
later, but under the restriction on A mentioned in the

introduction.

In our continuation procedure of the right side of
(16.4), we exploit the fact that above L-functions admit
meromorphic continuation to C with respect to s, and
with respect to « as well in the second and the fourth
L-functions. To reach (16.4) we appealed to Lemma 4,
and hence the bound (9.6) becomes crucial. Moreover,
the contribution of the continuous spectrum in (16.4)
makes it clear how important for us to have explicit
representation of Fourier coefficients of Eisenstein series
at each cusp, and this is of course closely related to
the structure of generalized Kloosterman sums which is
partly discussed in Section 15.

We begin with relations between o, defined by
(14.1) and the two basic involutions J : z — —Z, and

F, : z— —1/qz, which satisfy

JIo(q)J ' =To(q), Felo(q)F; ' =1TIv(q). (17.2)
We have
Joo =105,5",  Fuoa ="7204,5%, (17.3)

Y1572 S F()(q), blabQ S R7

where J(a), Fy,(a) are equivalent to by, bs, respectively.
For instance, the latter identity is due to the fact that
the stabilizer of by is

(72 ana) (12 FqUu)

=7y 1FqFan ~v2 C Io(q) (17.4)
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(see the remark made prior to (7.1)).

The reflection operator .J is isometric over L?(I'\'H),

for J(I'\'H) is a fundamental domain, and

H¢Jw::/" 2
I'\'H

= / | dp
J(P\H)

=/‘|w%u=ww.
I'\H

Besides, we have JA = AJ as well as the first relation
n (17.3). Hence ¢;J is a cusp form belonging to the
same eigenspace as v, for ¥;J(0a(2)) = (e, (2 +
b1)) converges to 0 as z tends to oo. Thus J can be
diagonalized on each eigenspace of A ; that is, we may
choose an orthonormal base {t;} in such a way that

Vi(=%2) = €;9(2),

Also, we observe that

(17.5)

€6 = +1. (17.6)

JO'l/Cg]O'l_/lc
—f/Vd )

Vd
_<—c¢& (1+cf)/Vd
((1+cf)/\/3 —f/\/ﬁ)

—cVd vd

( 14 2cf —2f )
= € I(ed). (17.7)
—2¢(14+cf) 14 2¢f
This implies that
Vi(Jo1ycd(2)) = ¥j(01/(2))
— i(01/c(=2)) = ¥j(o1/e(2));  (17.8)
namely
0j(—n,1/c) = €j0i(n,1/c). (17.9)
In particular, we have
L; (s;1/c) = ;L (s 1/c). (17.10)

Next, we consider the action of the Fricke operator

F,. We put F = F,4. Then each ¢; F is I'y(cd)- invari-
ant, and is a cusp form such that Ay, F' = v;9; F'; in
fact it is a unit vector as
| e
I'\H
:/ (=) 2da(2)
FI'\H
[ @kt =1, aray
I'\H

for FI'\'H is a fundamental domain of I' = Iy(cd);

moreover, ¢;F(04(z)) = 1;(0s,(z + b2)) converges to

0 as z tends to oco. Since F'J = JF, we may assume,
besides (17.6), that

ijF = ijjﬁ wj; = +1. (1712)

Further, we observe

(2,000
(0
!
(2

Ul/c

_1
cd

v —ﬂ)
o 1—|—cf —eVd
—cfVd — 1+cf)/f
evd
1+cf

_1— y
= are? | (17.13)

cd<f+dcf2 1> —c — 7

which is in I'y(ed). Hence we have

wj(o—l/cF(Z))

=P (Fo1/(2))
= %’(FUUC(«Z))

= w;Yj(01/c(2)); (17.14)

that is, we have

Vi (01/c (—1/cdz)) = w5 (0170 (2)) . (17.15)

18. We may now prove the functional equation for
Lj(s;1/¢) = L (s;1/¢) ; note that we have (17.10). We
have to discuss two cases separately according as €; =
+1lor—1.

The case ¢; = +1: We have, by (17.9),

/O (0 (01/c <\;‘Z—d>) y* " 2dy

. (18.1)
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On the other hand, by (17.15),

[ e ()t
oo () o

[ oo )
oo G

+ @ <01/c (\Z—d» y'TE }d% (18.2)

which is entire in s, for 1;01 . decays exponentially as y

1787%dy

tends to +0o. Namely, the function L;(s;1/c) is entire,
and we have

T B Lis+ik; Lig — ik, i(s;1/c
(\/a) F(z( + J))F(Q( J))LJ( i1/c)
= w, (\/a) D (21— s+ir)) T (5(1 — s —ixy))
x L;i(1—s;1/c), (18.3)

By the duplication formula for I'-function, one may
transform this relation into

Lj(s;1/c)

2s—1
w; [ 27 ) )
=i (L T(1— s+ in)D(1 — s —ir;
- <\/£> (1—s+ix))I(1 —s—iry)

x (coshmrk; —cosms) Lj(1 —s;1/c). (18.4)
The case e; = —1: We have
¥ (01/¢(2))
=20y Z 0j(n,1/¢)Kix, (2mny) sin(2mnzx), (18.5)
n>0
We put fj(z) = 0:¢j(01/.(2 —¢/d)). We have
fi(2)
=4mi/y Z no;(n, 1/¢)Kix, (2mny) cos(2mnx), (18.6)
n>0
which implies that asz — 0
¥j(o1/e(2)) = filiy)z + O(a?) (18.7)
as well as
Y (ol/c(—l/cdz))
= j (01/e(i/cdy — x/edy® + O(a?)))
= —(z/cdy?) f;(i/cdy) + O(z?); (18.8)

that is,
fi(i/cdy) = fchdyzfj(iy). (18.9)
Hence,
l/mf_(iy) .y W“aﬁi(ﬂT>_“4
o T \Ved)? YT Ved
xT (3(1+s+ir))) T (3(1+ s —iky))
x Lj(s;1/c); (18.10)

and

00 iy 1 B
A b(VM)y dy =

—w;fj (\Z—d) ylmos }dy.

Namely, we have that

Li(s;1/c) = _% (j;d)%—l

xT'(1—s+ik;)T(1 —s—ixy)
x (coshmkj + cosms) L;j(1 —s;1/c). (18.12)

Lemma 6. The function L;(s;1/c) is entire, and it holds
that for any s

Li(s;1/c) = % (%)251

xT'(1—s+ir;)I(1 —s—ixy)
x (e coshmrj —cosms) L;j(1 —s;1/c). (18.13)

We have also

Lj(s;1/c) < (K + |s| + 1))@ exp (37k;), (18.14)

where the constant cq depends at most on Res, and the
implied constant on Re s.

The second assertion follows via a convexity argument.

We may omit the discussion on L; , as it is analogous
to Lj.

19. We turn to D;(s, cv). There are at least two possible
ways for us to take here. One is to exploit the theory
of Hecke operators in order to relate D; with a product
of two values of Hecke L-functions analogously as we
did in the case of Mas(g;1) in [11]. However, the cusp
form 1; cannot generally be assumed to be such that the
corresponding Hecke series is fully decomposed into
an Euler product. This is because those g;(n,c0) with
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n|(cd)>®
erators, and thus the corresponding part of D;(s,a)

are not well related to eigenvalues of Hecke op-

causes difficulties in the continuation as well as the esti-
mation procedures, which is a serious drawback of the
method as far as our present purpose is concerned. One
may appeal to the notion of new forms whose Hecke se-
ries admits a full Euler product; yet it does not seem to
resolve our difficulties. Hence, we shall take the second
method which is in fact a special instance of applications
of Rankin’s unfolding method (see [11, pp. 181-182]).
This causes, however, still a technical difficulty, for it re-
quires us to have an explicit description of the scattering
matrix of IH(¢) and all Fourier coefficients of Eisenstein
series at each cusp (see (24.1) below). This task is highly
involved. The note [1] contains, in fact, a discussion of
the arithmetical nature of those Fourier coefficients and
the result appears to be essentially adequate for our pur-
pose, if we let our reasoning in the later sections be
somewhat inexplicit; note that the same can be done by
extending (15.14) to a full localization. Under such a
circumstance, it may be appropriate for us to make here
a compromise by introducing the assumption that A is
defined by a sum over square-free integers, as underlined
in the introduction. Since we have (14.7), this eases our
task considerably, yet it does not seem to restrict the
scope of our method. In the future, we shall work out a
fuller account of Ms(d; A).

20. Thus, we shall hereafter assume that

q = cd is square-free. (20.1)

By Lemma 5 in Section 12, we have now
. . 1
{inequivalent cusps of I'H(q)} =4 — :wl|gp; (20.2)
w

and we have (14.7) for any combination of cusps. In
particular, for those Hecke congruence groups that are
relevant in the sequel, (9.6) and thus Lemmas 2-4 have

been verified, without the discussion in Section 15.

To make Lemmas 3-4 more explicit, let us compute
the Fourier coefficients of Eisenstein series at each cusp.
Thus, by the assertion (14.7),

E(Ul/WQ(Z) 1/’[1)1; ): 6w17w2ys
+fy1 s ( 7%)
I(s)

@((v1, v2) (w1, w2)r)

((w1, we)ry/v102)?8

X

((v1,w2)(w1,v2),r)=1

1
+2f Zexp (2mina) K _ 1 (2m|nly)|n[*"2

Z C(Ul ,v2) (w 7’1112)7“(77’)
=1 (w1, wa)r\/v102)28’

X (20.3)

((v1,w2)(w1,v2),m

where the last numerator is a Ramanujan sum. We
have

o((v1,v2) (w1, w2)r)
(on wa)r v r)=1 ((w1, we)ry/v102)?8

1 e(r)

(w1, w2)%5 (v1,v2)° (rae1 r2s

X

o((v1, v2) (w1, w2)r)
Z 7.25
r((v1,v2)(w1,w2))>

cp pJ+1

1
(w17w2)2s(U17U2)8 H 2j8

pl(v1,02) \5=0
(i )]y e
pl(wi,wz) \J r =T
I
C25) s 0a) s )
s 1-s

pl(vi,w2)(wy,v2)

7 N
ﬁgvﬁ
|V |
—
—_
N———

(20.4)

Next,

Z C(Ulavz)(m,wz)r(n)
(w1, wa)ry/v102)?

((v1,w2) (w1,v2),r)=1

cr(n)

1
- (wl,wg)QS(vlvg)S Z 28

(r,q)=1

Z c(vhvz)(wl,wz)r(n)

7’25

. (20.5)

r|((v1,v2) (w1, w32))>
We have

C(vy,v2) (w1, w2)r (n)
7‘23

r((v1,v2)(w1,w2))>

_ p7+1

- H 2J5
pl(v1,v2)(w1,w2) \ = 0

_ 2 cpi(n )

- H p ’ Z 2]5

p|(v1,v2)(w1,w2) =

= ((v1, va)(wy, wy))?*

X 11 {al_Qs(np) (1 - pﬁs> - 1} (20.6)

pl(v1,v2)(w1,w2)
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and
01—2s(”7Xq)

L(2s,xq)

>

(r,q)=1

(20.7)

where n, = (n,p>) and X, is the principal character
modg. Thus,

Z C(v1,v2) (w1,w3) (n)
((v1,w2)(w1,v2),r)=1 ((wl’ U}Q)T v 121’1}2)25

S ()

X 11 {al_gs(np) (1 - pﬁ) - 1} . (20.8)

p|(v1,v2)(w1,w2)
Collecting these assertions, we obtain in particular
that

Lemma 7. The function s(1 — s)I'(s)L(2s, Xcd)

X E(01)w,(2), 1/w1; s) is regular for all s, and it is

< yRes 4 yl=Res gy = Re 2 tends to infinity, as far
as s remains bounded.

21. Lemma 2 holds safely for I = I'y(q), u(q) # 0, and
Lemmas 3 and 4 become as follows (see [10]):

Lemma 8. Let h(r) be even, regular and of fast decay on
the strip |Tmr| < § +mn with an > 0. Then it holds that

for any m,n > 0 and w1 |q, wa|q

Z (m, 1/w1)oj(£n, 1/w2) h(r;)

cosh 7k

”“ a2ir (M5 X )0 —2ir (15 Xq)
|L(1 + 2ir, xq)|?

+= Zw/

() (e

P RCCAI(S m> 1}
e (145

x H
pl(v,v2)(w

1 .
:ﬁéwl wsOm,£n €XP(2TiMby, 1wy)

X /OO rtanh(7r)h(r)dr

— 00

1
T Z (wh w2)""\/vlv2

(T7 (vlyw2)(’w1,’l}2)):1

x S((v1, we)m, £(w1, ve)n; (v1, v2) (w1, we)r)
dmy/mn
X ( (w1, w2)T\/U1U2>

with hy as in(11.4).

(21.1)

Lemma 9. Let ¢ be smooth and of fast decay over the
positive real axis. Then we have, for any m,n >0 and

wi|q, wa|q,

S((’Ul, wg)m, :i:(wl, ”UQ)TL; (’Ul, ”(}2)(101, ’w2)7‘)
Z (w1, wa)r\/v1v2
4my/mn
. w((wl,wg)r,/vlvg)
Z (m,1/w1)p;(£n, 1/w2)¢ﬁ:(/€j)

cosh Tk

141
(2k)p
+47T(47T\/72k IZ

9(k)
X Z 2j,k(m, 1/w1)0jx(n,1/ws)

j=1
ir Uin'(m; Xq)U—%-(n; Xq)

+% q;w /_O:o (% IL(1 + 2ir, xq) 2
g (([Z:Zh)yw (([Z:ZZ]))zﬂr

U (o)

p|(v,v1)(w,w1)

I ()

pl(v,v2)(w,w2)
(21.2)

1 ok) )

X @ (r)dr,
where (r, (v1,w2)(w1,v2)) =1 in the first sum, and the

transforms ¢+ are as in (11.6).

We specialize the last assertion as in (14.8), and have,
in place of (16.4),

(27r)u—w+1
QCud (u+v7w+z)

-y

+ j=1
Z QJ N,00)0wtz—1(N)
nQ(u+v+w+z 1)

y { 0j(£n,1/c) }
- n%(u—v—w+z+1)
2 (2k —1)!
471_ 2k [g]JF((% -

k=1
(n, 00)0u 42— 1(n)}

{Z nQ(u-‘rv-I-w-i-z 1)
2o

n

T (u,v,w, 23 g1 d/c)

+(Kjiu,v,w, 2)

cosh Tk ;

+2 Qk) i;u,v,w,z)

0j.x(n,1/c) }

% 1 (u—v—w+z+1)

1+2ir

1
7rd2+”z ) dl/oo |L( 1+22r Xed)|?

cd=ci1d1
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X [g]i(r'u v, W, 2)

« Z 0'227 n; Xcd Ow+z— 1( )
n2(u+v+w+z 1)+r

Moo )

pler
o_ 21T n; Xcd)

x Z (u—v—w+z+1)—ir
1
X H {U2ir(np) (1 - 1—}-217") - 1} dT, (213)
» p
with ¢ = ed, where p|(c1,¢)(d1,d) in the last product;

and we have used the fact that 0y /.4 € I'y(ed) and thus
9j (nv 1/Cd) = 0y (nv OO)’ Qj,k(nv 1/Cd) = ijk’(nv OO)

22. We now deal with the function D;(s,a). As re-
marked in Section 19, we shall employ the unfolding
method.

To this end we introduce the scattering matrix S of
I'v(cd). We thus write (20.3) as

E(01/w,(2), 1/wi; s)

=0, wo ¥ + o(s;wr, wa)y' T 4 (22.1)

We put
S(s) = («p(s;wl,wz)> : (22.2)

w1, wa|cd
and
E(s) = | E(z,1/w;s) , (22.3)
: wled
so that
1

E(s) = YA Sy T A, (224)

1

where the error terms decays exponentially and is
O(y%—s) as y tends to infinity and to 0, respectively.

We have the functional equation

E(z,s) = S(s)E(z,1 — s), (22.5)

provided both sides are finite. To confirm this, we let
Res, Im s be sufficiently large. Then (22.4) implies in
particular that E(z,1 — s) — S(1 — s)E(z,s) is in an
obvious vector extension of L%(I(q)\H). However, this
vector function, if not trivial, has the eigenvalue s(1—s)
against A the hyperbolic Laplacian. Since A is selfad-
joint, its eigenvalues s(1—s) should be real, which is a

contradiction, and hence (22.5) holds for all complex
s by analytic continuation as far as E(z,s) is finite.
Consequently, we have got also

S(s)S(1 —s) = 1. (22.6)

23. We shall assume ¢; = 1till the end of Section 24.

Let E(z, s) be the Eisenstein series for Ih(1), and put
E*(z,s) = n*I'(s)((2s)E(z, s), so that

E*(z,8) = E*(2,1 —s) (23.1)

and

E*(z,s) =7 °T'(s)((2s)y°
+m T (1= 5) ¢(2(1 = 5))y' ™
+2V5 Y In["" 201 a4(n)

n#0

x K,_1(2m|n|y) exp(2mnz), (23.2)

which shows that s(1 — s)E*(z, s) is regular for all s.
We have, on a suitable assumption on s,« to secure
convergence, that

[ hEE - )

I'o(cd)\'H

3a) du(2)

= / G ()E (2, 5(1 = )y 2 dp(2)
I'c\'H

xE(z,oo;s—

*4271 2% (n)e;(n, 00)
n>0
/ Ki, (2mny) K, (2mny)y*~ 3o Ldy
T
(5 0585) Py (s,a), (23.3)

:2 s=za (5 — foz)
with

L(s,a;6) =T (3(s+ir)) T (3(s — ir))
xT (3(s—a+ir))T (3(s —a—ik)). (23.4)

On noting this, we consider also the relation

| SR )
To(cd)\'H

x E (2,1/w;s — La) du(z)
I'(s, o; K5)

- 25— 39T (s — %a)

Dj(s,a;1/w),  (23.5)
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where

Dj(s,a;1/w) = Z 0j(n,1/w)oq(n,1/w)n™*, (23.6)

n>0
with o, (n, 1/w) an analogue of o, (n).

By (13.7), we have E*(01,.(2), 5) = E*(7,(2), 5)
= E*(vz,s), and thus

E*(01/u(2),5) = 7T (5)¢(28) (vy)*
+ 78I (1= ) C(2(1 — 5)) (vy)°
=+ 2\/52 ‘n‘s_%al—Qs(na 1/71})

n#0

x K, 1 (27|n|y) exp(2mnx), (23.7)
That is, we have
0a(n,1/w) = v Ve, (n/v), (23.8)
which vanishes if v { n.
Put
D;(s,a) = | Dy(s,a:1/w) (23.9)
wled
Then we have, by (22.5) and (23.1),
F . .
1(s,a, Kj) D, (s, )
mf 2o (s - %a)
_ I‘(} —5,—a;/$j)1 (s %a)
gl=stzal (1 — s+ Ea)
xDj;(1—s,—a). (23.10)
In particular, we get the functional equation
(1l = 5. —v: ks I'(s—1%
Dj(s,oz) — 7_‘,23—04—1 ( S, av”i]) (s QO;)
I'(s,a;k5) F(l -5+ §a)
X Z ¢ (s — 3a;00,1/w) D;(1 — s, —a; 1/w). (23.11)

wled
24. We decompose the left side of (23.5) as

Z /0 /y0 mE*(Gl/w1(z)7%(1—a))

w1 |ed

X E (014, (2), 1/w; s — $a) dp(z)

- BEE (= 41— 0)
(T'o(ed)\H)
x B (z, 1/w;s — %a) du(z),

Yo

(24.1)

where g is chosen so that the remainder domain
(Io(cd)\H)y, 1s a compact set in H. We then apply
Lemma 7 and (23.7) to each term of (24.1). We obtain
the crucial assertion

Lemma 10. The functions

(1-a?)(s—1a)(1-s+1a)T(25—0q)

x L(2s — a, xca)Dj(s,051/w)  (24.2)

of the complex variables s and o are all entire over C2.

In fact, it suffices to note that the multiple of (24.1)
by the factor (1—0?) (s —3a) (1—s+ 3a) (25— a)
x L(2s — o, Xxcq) 18 regular in s and « by Lemma 7.

On the other hand, we have, by (20.4),

L(28 - Q, Xcd)‘p (S - %a; 0, 1/’LU)

"2 - ) +a)

™

~ lw) (a)zs?

['(l-s+1a) _1 1_s4l
) LTI T (pe-be — plostie) | (243)
I'(s—3a) g( )

Inserting this into (23.11), we get

L(2S - Q, Xcd)Dj(Sv CY)

1 72\ Il —s,—a;K;)
~(G) et
x Y o) ] (ps’%a —pl‘”%“)
wled plv
x D;j(1—s,—a;1/w). (24.4)

We then let Res be negative and so large that both
¢(2(1 —s)+a) and D,(1 —s,—a;1/w) are absolutely
convergent. In this way we obtain, via Lemma 2,
Stirling’s formula, and the convexity argument,

Lemma 11. Provided that Res and o are bounded, we
have

(1-0?)(s—%a) (1-s5+3a)
x L(2s — o, xed)Dj(s, 051/ w)

< (kj+]s| + 1) exp (375;) , (24.5)

where T depends only on Re s and Re «, and the implied
constant additionally on cd too.

25. We still need to deal with the case ¢; = —1. Here
we shall have to overcome an additional technical diffi-
culties, because Eisenstein series of non-zero weights
naturally come up in our argument (see [11, Section
3.2)).
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We introduce

V5 (2) = y(0s (25.1)

i0y)1; (),

with our present vector ; such that i;J = —,;. We
have

¥y (1(2)) = 95 (2) 00y, 2)/ 2, 2))?,

In fact, writing £ = Re A(z), n = Im A(2) for a regular
function \, we have (0, — i0y)[H(A(2))] = {(0H/0¢)

x (0€/0x — i0¢/0y) + (OH /On)(dn/0x — i0n/dy)} =
[(9H /€ — i0H om) (9€ /0w — i0€/0y)} = (D — i0,) H]
x (d\/dz) by the Cauchy—-Riemann equation applied to
A. We put A=+, H =1y, and get y(9, — i0y)¢;(z) =
(y/m)(dy/dz)n(d¢ — i0,)1; (€ + in), which confirms
(25.2).

vel. (25.2)

To offset the automorphic factor in (25.2), we intro-

duce
E_(z,1/w;s) = Z (Imol/w (z))
WEFl/w\F
x (slor s )/ (o7, 2)]) (25.3)
We should note the relation
Y(0z —i0y)[E(z,1/w; s)] = —isE_(z,1/w;s), (25.4)
which can be confirmed by setting A = o /w'V’ H=y°
in the above; and more precisely
Y(0z — i0y)[E (01w, (2), 1/w; 5)]
= 0SB (01w, (2), 1/w;5)
-2
x (2(01/w1> /131w, 2)) T (25.5)
In particular, we have the functional equation
sE_(z,8) = (1 —s)S(s)E_(z,1—s), (25.6)
with
E_(s)=| E_(z,1/w;s) (25.7)
. wled
Also, (25.5) implies that
(s 4 1) L(28, Xed) E— (01w, (2), 1 /w15 8)
< yRes + yl—Res’ (258)

as y tends to infinity while s remains bounded, which
means that the left side is regular for all s, too. This is
a counterpart of Lemma 7.

In the region of absolute convergence, we have, by
(25.2),

vy () (2, 3(1 =) B (z,1/w;s — a) du(z)

I'\H

- ¥

—1
YEL 1 /w\ I 7107

TV G I RPN,
g (IJ(vl,al/w(zﬂ) E*(01/w(2), 3(1 = a))

_ _ -2

s—Lq ](Ul/lw’%’y 101/w(z))

Xyt 2 o — dp(z)
19(07 0y Y 010 (2))]

.S / )

¥ (01/w(2))

I'\H)

YEI ju \I"

(Ul/wv ) (o 1 N s—ia P
< (et )) B (01/0(2), b1~ @)y 5 du2)
/ / B IGYRE))

X E*(010(2), (1 — @) y*~ 29 Ldzdy, (25.9)
since

1/1;(01/70(2)) = y(aw - Zay)[%(ﬁ/w(z))]

X (](Ul/wvZ)/|](Ul/w7z)|)2' (2510)

We observe then that E* (07 ,,(2), 3(1 — a)) is even in x
as (23.7) implies, and 9,[¢;(01/,(2))] is odd by (18.5).
Hence (25.9) becomes

()BT (z,3(1— ) B_(2,1/w;s — 30) du(z)
I'\'H
=—9 I;‘(3+17057 HJ) D](S,O[,l/'lU),
w57z (s +1- %a)

(25.11)

provided absolute convergence holds throughout.

We decompose the left side of (25.11) in just the same
way as we did in (24.1), and see, via (25.8), that

(1-a®)T (s+1—2a)L(2s — a,Xca)

x Dj(s,;1/w) (25.12)

are all regular in both s and «. Also, (25.11) gives, via
(25.6),

L(s+1,0;k5) D.(s.a
S_,QF( . Ot) ](7 )
(2 -—s,

—Q; Kj) 1
= T S — =
mi=st3er (1 — s+ 1a) (5= 39)

xD;(1—s,—a), (25.13)
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and in particular
Dj(s,a)
2s—a—1 F(Q -5 - Hj) r (S — %a)
(s + Lainy) T(1—s+ ba)
D;(1—s,—a;1/w). (25.14)

X Z ¢ (s
wled

Hence, by (24.3), we have

— %a;oo,l/w)

L(2s — a, Xed)Dj (s, a)

1 (72\>*7 r2-s,—a;kK;)
T2 (cd) CA=s)+ )T F(S+ 1 a; Kj)
x> w(w) [T (b = piotie)

wled plv
x Dj(1—s,—a;1/w). (25.15)

With this, we obtain

Lemma 12. With €¢; = —1 as well, the assertions of

Lemmas 10 and 11 hold.

This ends our treatment of L; and D;. We omit the

discussion of L; , D; 1, for they are analogous.

Here we shall
deal with the first term on the right, the contribu-
tion of real analytic cusp forms. Its contribution to
I(u,v,w, z;g;b/a) is, via (2.2), (2.3), (17.10), equal to

2

26. Now we may return to (21.3).

Z cu-‘rvd% Butv—w+2)
cla,d|b

XZR Fu+v+w+z-1),w+2-1)

x Lj (3(u—v—w+z+1);1/c)
(gl+ +€ilgl)(mj5u, 0,0, 2)
x Lt cosh . (26.1)
with
R;(s,a) = ((25 — a)D;(s, o). (26.2)

By Lemmas 9-12, we see readily that the expression
(26.1) is meromorphic over C*, and especially in the
vicinity of p1 it is regular; the necessary facts about
[g]+ is to be given shortly. Hence its value at p1 equals

ﬂf Z chR 5,0 3:1/c)

cla,d|b J
y (l9]+ + €5lg]-)(rj5p1)
cosh 7k, '

(26.3)

We have another contribution of real analytic cusp
forms that comes from J_, which is, however, exactly
the same as (26.3).

Let us make the last factor in (26.3) explicit. Thus,
comparing (6.4) with [11, (4.3.13)—(4.3.14)], we see that
the exchange of variables u and z is to be applied to [11,
Sections 4.6-4.7] to get corresponding identities. More
precisely, we have, under (3.4) and (4.1),

[9]+(r; w,v,w, 2) = L COS(%T((U —2))

4ms

x/ sin(3m(u+v+w+ 2z — 2s))
(m)
xTE(u+v+w+z—1)+ir—s)
xTE(u+v+w+z—1)—ir—s)
xT(s+1—w—2)(s+1—v—w)g"(s,w)ds, (26.4)
1

[g]—- (r;u,v,w,2) = T cosh(rr)
x/( )cos(w(er%(erz)fs))
Xf(n%(quererzfl)Jrirfs)
xT(3(u+v+w+z—1)—ir—s)
xT(s+1—w—2)(s+1—v—w)g"(s,w)ds, (26.5)

corresponding to [11, (4.4.12)] and [ibid, (4.4.15)],

respectively. We then put

(I)-F(gv ’LL,’U,U_),Z;Q) = _i(zﬁ)wi’L)iQ COS(%T((U - Z))

x/ioosm(
xTG(u+v+w+z—1)+&—5s)
xIT(3(u+v+w+z—1)—E&—s)
xIP(s+1—w—2)T(s+1—v—w)g*(s,
(& w0,w, 25 9) = i(2m)" "2 cos(€)

d_
X / cos(m

m(u+v+w+z—2s))

w)ds; (26.6)

(w+5(v+2)—s))

xT(3(u+v+w+z—1)+E&—s)

xIT(3(u+v+w+z—1)—E&—s)

xP(s+1—w—2)T(s+1—v—w)g"(s,w)ds; (26.7)
and

E(&u,v,w,2;9)

1 P+ gutvtwtz—1)—s)
- 2mi i TE+ 3B —u—v—w—2)+5s)

xT(s+1l-—w—2T(s+1—v—w)g(s,w)ds. (26.8)
The paths in (26.6) and (26.7) are such that the poles of
the first two gamma-factors and those of the other three

factors in each integrand are separated to the right and
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the left, respectively, by the path, and &, u,v,w,z are
assumed to be such that the path can be drawn. The
path in (26.8) separates the poles of I'(§ + 3(u+v +
w+z—1)—s) and those of T'(s + 1 —w — 2)I'(s +
1—v—w)g*(s,w) to the left and the right of the path,
respectively. We have the relations

(2m)* = cos (57 (v — 2))

(I)+(£;U,’U,’I,U7Z;g) = -

4sin(w€)
X {E(§;U7’U, w, Zag) - E(_ga u,v,w, 279)}5 (269)
B (€0,w,19) = o fsin(a(hu - w) + €)
X E(f;u,mw,z;g) - SHI( (%(’U, - ’IU) - f))
X E(—ﬁ;u,mw,z;g)}, (2610)

provided the left sides are well-defined.

Under (4.1
tours in the last three integrals; and we have, for r € R,

), we can obviously take (1;) as the con-

9]+ (r; u, v, w, 2)

1
= 5(277)1+1L_11)‘I)+(ir; U, v, W, z; g)a
9] (r;u,v,w, 2)

1
= 5(27‘1’)1+“7w<1>_ (ir;u,v,w, 23 g). (26.11)

In particular, we have, after continuation,

(lgs +l9-) (ripy)
T )
== + ——— ) E (ir;p1; 26.1
2Re {(ej + sinhm“) (zr,pz,g)}, (26.13)
since (3.2) and (26.8) imply = (ir;p%;g) =
= (—ir;p%;g).
From this, we get immediately

Lemma 13. Provided the polynomial A is supported by
the set of square-free integers, the contribution of real an-
alytic cusp forms to Ma(g; A) is equal to

> " Ale,d)C(c, d; g),

c,d

(26.14)

where

QaclObdl
Aled)= > ==
(ac,bd)=1

(26.15)

and
C(c,d; g)
1
- — R (L0
Z cosh 7k i (3 )
j
K2+ L esp(In(ed)

Z’ _ N . .

The fact that the parity symbol €; appears in this way

Ly (3:1/¢)

will turn out to be crucial in our later discussion of a
certain non-vanishing assertion (Sections 31-36).

The contribution of holomorphic cusp forms is analo-

gous, and we may skip it.

27. We turn to the contribution of continuous spectrum;
and we see from (21.3) that we need first to consider the

sum
3 0—2ir (1} Xed)
n ns
1
X H O'_Qir(np) 1-— W -1
pl(c1,¢)(d1,d)
1
- Y @ dnI](1- )
U|(c1,e)(d1,d) pll
X Z 0 2ir (1M Xed)T—2ir (N)0 %, (27.1)
with n; = (n,1>). We have
> 0 2ip (15 Xea) T —2ir (n)~
B 0 _2ir(1; Xed) o_2ir(n)
=9 T X T
(n,l)=1 n|l>°
1 -1
= ((8)L(s + 2ir, Xed) H (1 - ps+2zr) . (27.2)
pll
Thus

Z o_2ir(M; Xcd

) {fmmmé—pim)‘%

< I
=C(s)Lls +2irxea) Y. nllen)(drd)/)

pl(c1,¢)(d1,d)
”(Cl 7C)(d1’d)

-1
1
x H < s+217) (1 B p1+2ir>

pll

=((s)L(s + 2ir, Xcd)

3 (=)

pl(e1,c)(d1,d)

1

(27.3)
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Next, we need to treat

Z UZir(n; Xcd)aa (n)

X }_C[l {O’Qir(np) <1 — 1)1_1%> — 1}
=Sue oI (1~ 52 )

‘3 T2ir (M5 Xed) T ()0 2ir (1)

nS
n

We have

02ir (n; Xcd)Ua (H)Uzir (Tbl)
> g
n
024 (n§ Xcd)aa (n)
nS

(n,l)=1

" o2ir(N)og(n)

Analogously to a famous formula of Ramanujan, we

have

Z O—2ir(n; Xcd)oa (n)
nS

(n,l)=1

= 92ir(n)0a(n)

nS

(n,ed)=1

:L(s, Xq)L(s — 2ir, xq)
L(2s — 2ir — a, Xed)
X L(s — o, Xea)L(s — 201 — oy Xed)

< 11

-1 -1
(-5) (-5=)
pled/! P b

Z o2ir(N)oa(n)

nS

Z Utjl(sn)

nl(cd/1)>

n|l>°

1
1 — Ta a
p2572zr70¢

=11 1 1
i (1) (1 )

Thus,

Z U2zr N3 Xed Ja( )UZir(nl)

n

C(s) (s — 2ir, Xcd)C(S —a)L(s — 2ir — a, Xed)

Hence,
02ir (1 Xed)0a (1)
1
X H {Uzir(np) (1 — pl—22’r’> — 1}
P|01
_ C(8)L(s = 2ir, xq)C(s — @) L(s = 2ir — &, Xed)

L(2s — 2ir — a, Xed)

(27.4) (1_ 1_12i7_> <1_ QS_;TW)
) ()
_C(s)¢(s — 25(7’2)56 2;)(25) 2ir — @)

(27.5) Xpl|_d[1( P 22r> (1 po—2ir— a>
x;z{o = m>< = a>

28. Under the conditions (3.4), (4.1) and by (21.3),
(27.3), (27.8), the contribution of the continuous spec-
trum to [ via J} is equal to

2ﬂ_w u— 2/ Yo b (ir;u, v, w, 2) Z (ir; u, v, w, 2)

avbv 1+ 2ir)¢(1 — 2ir)
(g]_+[g] V(s u, v, w, 2)dr (28.1)
where
Z(f;uvwz)zC(l(u—&—v—i-w—Fz—l)—i—f)
(%(u+v+w+z—1) €)

(27.6) CGutv—w—24+1)+¢)
(Gutv—w—2+4+1)—=¢)
CGu—v—w+2+1)+¢)
(Gu—v—w+2+1)—=¢) (28.2)

and

L(2s — 2ir —
1

p2572i7‘70¢

X .
11 ; ;
pll 1= ps—2i7' L= ps—2ir—a

aaXcd)
1—

(27.7)

1 _ —1)—
Ymb(f;Uﬂ)ﬂU,Z) = E Cu+vd2(3u+v wta—1)=¢
cla,d|b

X Xcd(f;u,v,w,zL (283)
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with

Xea(&u,v,w, 2)

~TH{(-5) (-5) (-5}

pled

T ()

cd:q d1

1
X H (1 — pé(uvw+z+1)+§)

pl(d1,c)(c1,d)

1 1
x H (pé(u—v—w-&-z) - pé-‘r{)

pl(c1,¢)(d1,d)

1
X H (1 a pé(u+v+w+z—l)—§)

pld1

1 1
o p%(u+v7w7z+1)7£
1
(I
pler

<1 p2(u+v+w+z 1)— E)
1 1
p%(u+v7wfz+1)7£ :

One may carry out the last sum and transform X4 and

(28.4)

thus Yy, into a more closed expression that is a product
over prime divisors of ab; however, for our aim it does
not seem particularly expedient to do so, and we leave
(28.3) asitis.

To continue (28.1) to a neighborhood of p; , we need
to shift the contour rightward and leftward appropri-
ately as is done in [11, Section 4.7], and there appears
a residual contribution, which will be treated in detail
later. Here we shall compute, at P, the integral thus
continued.

By (28.4), we have, for r € R,

1

(-3)

N Z d1 < T ))éﬂrn(l_p;ir)z

pld1

)6

1—

Xcd(ir;p%) = H

pled |1 1

p1+21r

(b))

(28.5)

This implies that

Yau(ir;py)

STl | ()
{ <1 i pzl”) (1 - 219) - <1 - pzl”) }

ab 1™ 1
(p(ab)H<4‘1+p2w p).

plab
Lemma 14. Provided the polynomial A is supported by

1+

p%Jrir

We have obtained

the set of square-free integers, the contribution of continu-
ous spectrum to M(g; A) is equal to

1 agay [ ’C(%+ir)’6
DY Tl e

(a,b)=1
_9 1
p

<] ( ‘
x Re {<1+Sin£ﬂr>5(ir;p1 )}dr (28.7)

plab p2+zr
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29. We shall give the continuation procedure of (28.1)
to a neighborhood of pL. This is, however, analogous
to that pertaining to the pure fourth moment Ms(g;1)
that is developed in [11, Sections 4.6-4.7]; and we can
be brief.

By (26.9)—(26.11), we transform (28.1) into

Z,(%)mul/ Z(&u,v,w, z)

avby (0) sin(m&)¢(1 + 2£)¢(1 — 2¢)
X {Yo 5 (& u v, w,2) + Yo 5 (=& u,v,w, 2) }
x {cos(37(v —2)) —sin(m(3(u—w) + &)}
x E(&u,v,w, z; g)dE;

(29.1)

and applying the functional equation for ¢ to (1 —2¢),
this becomes

pZ [ @RI 207 )
(0)

avbv C(26)¢(1 +2¢)
X {Ya,b(f;uvvawaz) + Ya,b(_f;u7vawaz)}
x {eos(57(v — 2)) = sin(7(5(u —w) +€))}

x E(& u, v, w, 73 9)d€ (29.2)

(see [11, (4.6.14)—(4.6.15)]). We shift the last contour to
the far right, and we obtain a meromorphic continuation
to a domain containing the point P1; then, restricting
ourselves to the vicinity of pL,we shift the contour back
to the imaginary axis. The resulting integral has been
considered already in the last section.

The residual contribution of the last procedure takes
place when

1
51:§(u+v+w+z—3),

£2=%(u—v—w+z— ),
: (29.3)
5325(371171171072),

1
§4:§(u+v7wfzfl).

(see [11,(4.6.16)] and the bottom lines of [ibid, p. 173]).
It should be stressed that this assertion depends on
the fact that the singularities, save for those belong-
ing to Z(&;u,v,w, z), that we encounter in this proce-
dure are independent of the location of (u,v,w, z); es-
pecially those of Y, »(£&; u, v, w, z) come only from the
first product on the right of (28.4) and are independent

of (u,v,w,z).

REMARK 4. However, one should note that the set of
poles of Y, (&; u, v, w, z) as a function of ¢ cluster at the

point { = +1 if a, b are allowed to vary arbitrarily.
Thus, if the length of the polynomial A increases indefi-
nitely, then the nature of the main term of Ms(g; A)
should become subtler.

30. With this, we have essentially finished spectrally
decomposing M (g; A). Although we have not yet com-
puted the main term explicitly, the above is already
quite adequate to analyze the error term in the asymp-
totic formula for the unweighted mean

T
/0 ¢ +it)[*|A (L +it)| dt. (30.1)
With this in mind, we shall investigate the location of
poles of the Mellin transform Zs(s; A), focusing our at-
tention to the contribution of real analytic cusp forms,
for the relevant part of Zs(s; A) seems to be the most
interesting.

Having the assertion of Lemma 13, the argument of
[11, Section 5.3] works with Zs(s; A) as well without
any essential change. We find, on the assumption on
eigenvalues n? + i made in the introduction, that

Lemma 15. The function Zy(s; A) is meromorphic over
the entire complex plane. It has a pole of the fifth order at
s =1, and all other poles are in the half plane Re s < % .
More precisely, Zy(s; A) has a pole at %4—@';{, k>0, if
and only if it holds that

> Ale,d)
c,d
SR (50) L (351/0) (-

sinh 7k

) £0, (30.2)

in which the second sum is over x; = k with 7 + ] €
Sp(Lo(cd)).

We are going to show that if A is fixed besides a
natural condition on its coefficients, then (30.2) holds
for infinitely many . To this end we shall establish in
the sequel that there are infinitely many x such that

R(k; A) =Y Alc,d)
c,d
x )

Kj=R

1
K3+7€Sp(Io(cd))

e;R; (3,0) L; (3:1/c) #0. (30.3)

REMARK 5. As to the possible poles coming from the
contribution of the continuous spectrum, one may fol-
low the discussion in [11, p. 211]. In view of (28.7), we

may have poles at
m
20+ 1
@+

leZ, (30.4)
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where plab with a,ap # 0. Thus it can be asserted,
somewhat informally, that as the length of A tends to
infinity the imaginary axis is gradually filled up with
poles of Z5(s; A).

31. To deal with R(k;A), we adopt the argument of
[11, Section 3.3]. Thus, on noting the definitions (17.1)
and (26.2), we consider more generally the sum

D(u,v;h)
~Cu+0) 3 531/ Dy =)
=C(u+ v)D1(u,v; h), (31.1)

with an integer f > 0, where the sum is extended over
K3 + 5 € Sp(Io(ed)) with a fixed pair ¢, d, p(cd) #
0; also the weight A is assumed to be an even, entire
function such that

h(+4i) =0

L (31.2)

and

h(r) < exp(—co|r|?), (31.3)

with a certain ¢y > 0, in any fixed horizontal strip. By
Lemmas 10-12, D(u, v; h) is meromorphic over C2, and

regular in the vicinity of (3, 1); in particular, we have
DLk h)
h(x;)

J

In the region of absolute convergence, we have, by
definition,

1(u,v; h)

Em O'ufu

ngj (= f31/¢)0; (m; 00) ——2 hlry) (31.5)

coshk;

We apply (21.1) to the inner sum, getting

D1 (u,v; h) = Da(u,v; h) + D3(u, v; h) (31.6)
where
Dy (u,v; h) b m~"oyu_y(m)
evd
x El: %S(m, df,cl)w( ;&\/mf), (31.7)
(Ld)=1

P(z) = 12 /OO rsinh(nr) Ko (x)h(r)dr,  (31.8)

and

L(u—i—v Xed)Ds(u,v; h)

— Zal (%

(1(11 (d

X C(u+ir)(u—ir)¢(v+ir)((v —ir)

L () )

pl(c1,¢)(d,d)

142ir  pip
* f 0—2zr(f% Xcd)
|L(1 + 2i7‘, Xcd)‘Q

_ (1 - pul_i,.> - p1_> }h(r)dr, (31.9)

in which we have used (27.8) with s = u+ir, « = u—wv.

32. To transform D, we use the formula

1 h(s) /a\—2s 1
n= = (a) COSTS (5) ds, 0<a <(Z; )
where
- i T'(s+ir

(see [11, p. 113]). Moving the last path far down, we
see that A is entire. Also we have

h(+1) =0, (32.3)
and (32.1) is replaced by
1 h(s) [ay—2s
== z 2.4
¥(=) 2 /(a) cos s (2) ds, (32.4)

where —2 < a < 3.

tially, which facilitate our discussion greatly. We stress

The integrand decays exponen-

that the presence of the factor ¢; in (30.3) has induced
this effect.

Thus in (31.7) we have

S L S(m, ey (fjawv?f) ,

1
(Ld)=1

:iz Z %S(m,—af;cl)

& l
(1,d)=1

x/( h(s) (;;a\/nTo%ds, (32.5)

) COSTS
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with

-f<a<-1. (32.6)

The right side of (32.5) converges absolutely. Then we
assume that

Rewu, Rev >1—a. (32.7)
On this we insert (32.5) into (31.7), and get
1 1
Do(u,v;h) = —— ~P(u,v;l), 32.8
i) = 5z B pPul, (@29
(1,d)=1
where
o ~2s hs)
P(u,v;l) = / — —
( ) (@) (cl\/ﬁ\/}) cos(ms)
cl
X Z exp(—2midfa/cl)
(aac?)Ll
X Z Ou—v(m)exp(2mima/cl)m=""%ds, (32.9)
with aa = 1 mod dl.
We introduce further a sub-region of (32.7):
1—a<Re(u),Re(v) < —p0,
(u), Re (v) X (32.10)

3 1
—5<fB<a-1, —3<a<-—j.

Then we move the path in (32.9) to (). On the as-
sumption u # v, we have, by Estermann’s functional
equation (see [11, Lemma 3.7]),

P(u,v;1) = —2mica(f)(cl) 747

X {(QW\/f/d)Q(“_l)ﬁ(l w)C(1 —u+wv)/cosmu
+ (2m/F]d)?DR(1 — v)¢(1 — v+ u)/ cos m}
4 2(27T)u+v72(cl)17u7v

X { Z m Lo, _y( m)ce (dm + [V (u,v;dm/f;h)

+ Z m" 0'7) u C(l(dm f)
=1
X \I'_(u,v;dm/f;h)}7 (32.11)
where
U, (u,v;x;h) = — I'l—u—s)I'(l—v—s
v = [ 10— -0
1 }AL(S) s
x cos (7 (s + 5(u+v))) p— ds (32.12)
and
V_(u,v;w; h) = cos (3m(u —v))
h(s)
X /(B) 't—uw—s)'(l —v— s)cos(ws)x ds. (32.13)

33. We insert (32.11) into (32.8). We get under (32.10)
that

L(u+ v, Xed)Da(u, v; h)
={D}+ D3+ D3 + D3} (u,v;h),  (33.1)

where

2(u—1)
2 I h(1 —u)
ﬁém\/ﬁ{ (2%\/?) m((l—quv)
2(1}—1)]AI 1
(i) M-

X 01—y—v(f, Xed) H <Ul—u—v(fp) <1 - pulﬂ) - 1> ,

ple

(2m)utv—4
vd
X 01—y (dm + f; Xed) Psiy(u,v;dm/ f; h)

<IT (orowmaltam+ ) (1- 2 ) =1).

ple

u

D3 =8 m* Lo,y (m)

(27T)u+u 4

7 Z m* o, w(m)
dm?ff
X 01 —u—v(dm — f;Xea)V—(u,v;dm/f;h)

<1 (ormumttam =) (1= 25 ) 1))

ple

p3 =gZT

4 ut+v—4 @(C) _
D5 = 8(2m) TﬁvﬁL(u +v

X Oyu(f/d)T_(u

Lxa)(f/d)"

05 15 ), (33.2)

in which D% appears only when d| f.

The expansion (33.1) with (33.2) has been proved
under the assumption that u # v and (32.10) holds.
However, the former can be dropped now; and also D3
and D3 converge absolutely if 1 + 3 < Rewu, Rev <
—f. In particular, L(u+ v, xcq)D2(u,v; h) is regular at
(é’ 2) and there (33.1) holds.

Further, shifting the path in (31.9) upward and
downward appropriately, we have the following continuation
of D3 to the domain Rewu, Rev < 1:

L(u + v, Xcd)DB(ua v; h)

= {D3+ D3 + D3} (u,v; h), (33.3)



where

)

y o2 (3 Xed)
|L(1 + 27;7'7 Xcd)‘Q

x C(u~+ir)(u —ir)¢(v+ir)C(v —ir)

L () )

pl(c1,¢)(d1,d

< (- 5) (1 5)
{6
- (1 - p“l”) (1 - pvl”) }h(r)dr’

D3 = —2f""“o3(u—1)(f; Xca)
(utv-Dow-—u+),
TG 20 v h(i(u —1))
w(cr) d17d)>3_2u
X . ;Cd u+1)d ( \/;i

< 1 <U2(u—1)(fp) <1 - p312u> - 1)

pl(c1,c)(d1,d)

XH( - pute— 1)

pld1
- 2f 52(v—1)(f'Xcd)
" Clu+v—1C(u—v+1)

L(3 — 20, Xca) h(itv = 1))
plcr) ((di,d)\*™*
i ( Vd )

< T (e (1= 5w ) -1)

pl(c1,c)(d1,d)

XH( - pute— 1)

P|d1
D3 = =2 o301-u)(f; Xca)
o Clu+v—=1)¢(v—u+1)

L(3 —2u, ch) h(i(u —1))
A (-7)
< Ew )

T (52 )

pl(c1,¢)(dy1,d)

XH( vu+1>

pld1
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{6 )6 )

pley

()05 |

— 2" og1—0) (5 Xea) Gty Iu—vt])

L(?l— 2U7Xcd)
« h(i(v — 1))1911 (1 - p; 1)
x ¥ ﬁm<%pf“l
7 d

X

11 (02(1—1;)(fp) <1 - pzl—l) - 1)

pl(c1,c)(d1,d)

XH( - uv+1)

pld1

T (- 5) (- 5)

pler

(D))

We see readily that D} and D3 are regular at (3, 3).
As to D3, the factors [ 4(1—p'~**)~" and [, 4(1—
p!~2v)~! diverge at the point unless cd = 1; however,

Dg itself must be regular there, for L(u + v, Xca)D1,
L(u + v, Xca)D2 are regular, and thus L(u + v, xca)Ds
as well.

Hence, from (31.1), (31.6), (33.1), and (33.3), we
obtain

1 _ cd
3 = Sy

D (33
+Di+ Dy + D3+ DI} (3, 45m).  (335)

{D} + D3 + D}

34. The last equation gives

Lemma 16. We have, with the weight h as above,

Soui:1/0m, (10 0) )

cosh mk;

7

where

2cd
m3ip(cd)

{ (cg — log(2my\/ f h)'(3) + X( h)"(

¥y =

N[
~
——
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T(fa Xcd)fﬁé H <T(fp)
ple

_ oV
27 my(cd)

XE?’TLQT

Tlfrome (1))

(-2)-)

T(dm + f;xca) ¥+ (dm/ f; h)

_ oV

° 7 mp(cd)
X Z m_ér(m)T(dm—f;Xcd)‘Il_(dm/f;h)

dn7Ln;£f

1

< (a0 (1-5) -1),
Ky =~ 2 Ar()u_(1:)
J{Q—%D (L, Ln), 5<a<T. (34.2)

Here 1 is the divisor function, Uy (x;h)
= U4 (3,525 h), and Hy vanishes unless d = 1.

This is a counterpart of [11, Lemma 3.8], and follows
immediately from (31.4), (33.2) and (33.5). We have
left Ho(f;h), 5 < a <7, without computing it explicit-
ly, because it seems better to avoid the highly com-
plicated computation of Dj (3, 3; 1) caused by the two
products over p|cd mentioned above; and in fact those
Ho(f; h) will readily turn out to be negligible in our

application of (34.1) to be given in the next section.
From [11, pp. 119-121], we quote the following:
R [e'e} I‘\/
(h)'(3) = 2/ rh(r)—= T (3 +ir)dr,

— 00

ot , , (34.3)

(k) =4 [ rh){(h+in)} dn

U (x;h) = 277/0 {y(1—y)(1+y/a)} =
X /_Z rh(r)tanh(wr){%}irdrdy. (34.4)

Forz > 1

U_(z;h) = 2m'/0 {v@ -y -y/z)} *

* rh(r) gy(l—y)\"
. [w cosh(wr){ r—y } drdy.  (34.5)

Forz =1
¥- (i) = 20 /_OO ’"h“)mw (34.6)

ForO<z <1

U_(x;h)
> s s—1 F(% —s)?
B /0 { /(,5) »la+1) I'(1 — 2s) cos(ms) ds}

X {/_OO rh(r)(ﬁ)irdr}dy,

[e.°]

(34.7)

where—f <p <

B#-}.

35. We shall continue our discussion, adopting the ar-
gument given in [11, pp. 124-130]. Thus we first state
the following approximation for L; ($;1/c): Let K tend

to infinity, and assume that

|k; — K| < Glog K (35.1)

with

K3 <G <K' 0<§<l. (35.2)
Then we have, for any N > 1 and A = C log K with a

sufficiently large C' > 0,

Lj(3:1/c)

= Y o(fi1/e)fE exp(—(F/(KVed))
f<3K\ﬁ

S S aharua)
v=0 r<3K+ed

x (1= (r;/K)?)” +O(K 5N + K—39),  (35.3)

with the implied constant depending only on 4, C, and

N. Here Ny = [3N/d] and
U, (x)
=2 (_/\_l)(47r )% uy, (W) (w/N)dw, (35.4)

where u, (w) is a polynomial of degree < 2N;, whose
coefficients are independent of x; and bounded by a
constant depending only on ¢ and V.

In fact, this assertion is a counterpart of [11, Lemma 3.9]
and the proof is analogous; the necessary change is only
in that we now use (23.13) instead under the assumption
wie; =+1as L(3;1/c) =0if wje; = —1.

With this, we now set, in (34.1),
h(r) = (r2 + §) { exp(~((r -
+exp(~((r + K)/G)) }.
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We have

(h)' (L) = 2in2 K°G + O(KG?),
()" (3) = 8in? K3Glog K + O(KG*log K). (35.6)
(see[11, p. 129)).

We have, by (34.1) and (35.4),

h .
Zea 30 (5%1/0)(;08;%
7
= Y frexp(—(f/(KVed)) Y Ha(f:h)
F<3KVed a=1

=YY FU/(E V)

v<N1 f<3K+ed

7
xS 3,(f5h) + O(1),

a=1

(35.7)

where the five terms correspond to those on the right
side of (34.1), respectively, with the present h and

h,(r) = h(r)(1 — (r/K)?)". Since we have imposed
(35.1)—(35.2), those terms with v > 1 can actually be
ignored, and it suffices to consider instead

7
Yo frrep(—(f/(KVed)) Y Ha(f;h)
F<3KVed a=1

— Y [TEU(f/(KVed))

Z o(fih). (35.8)
f<BKVed a=l1
The discussion in [11, pp. 128-129] works just fine with
our present situation as well; and the contribution of

H,, a =2,3,4, turns out to be negligible.

REMARK 6. However, if the uniformity in the Stufe
cd is required, then this part of our argument should
become subtle.
As to Hy, its contribution to (35.8) is equal to
4ed

Toled K3G (X1 + K32) + O(KG3*(log K)?), (35.9)
where we have used (35.6), and
K=Y (cE —log(2m\/f/d) + log K)
x exp(f—(f/(K\@)*)
A (e () ),
Ky=—Y (cE —log(2m\/f/d) + log K)
x Uo(j‘/ (KVed))
X w g[ <T(fp) (1 — ;) - 1) . (35.10)

To compute X7, Ko, let us put

0= e
x pfll (T(fp) (1 - ;) - 1) @)
Then
X,
— o3 /(  {0osevar2m) 2z + 320}

x (KVed)*T(s/\)ds
Ko
1

T T 2mia {Qog(KVd/2m) + cr)z(—s) + 32/ (—s)}

x (472 ) KV ed)*uo(w)T(s/N)ds

(35.12)

The latter can be replace by

g L, {osVp2m) 20 3 -

x (472 KV cd)*T(s/\)ds

(35.13)

with an admissible error (see [11, p. 127] for a descrip-
tion of ug).

We have

6 =<+ (1- k)

pld

2 1 1
x H ( pstl o pst2 + p2st2 + p25+3> - (35.14)

Hence, we get

1
K1, Ko ~ g(lOgK)g)sp

36. It remains for us to deal with H,,5 <a < 7.

We have obviously

Dy (350 <7 [ L
< 7(f)K3(log K)5, (36.1)
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which can of course be replaced by a better bound, but
for our purpose this is sufficient. We see that the contri-
bution of Hs to (35.8) is < K7 (logK)7, which is
negligible in view of (35.2), (35.9), and (35.15).

As to Hg and H7, we shall treat the latter only, for the
former is analogous and certainly easier than the latter.
As we have remarked already, D3 (u,v;h) is regular in

the vicinity of ( 3 2) Thus we have

D3 (3:33h)

1 // E )1 dudv, (36.2)

G2/ Cy U_§ _5)

where )

Cri -3 = g,

B(2 + log cd)
36.3
A (36.3)

21 2B(2+loged)’

with a sufficiently large constant B. This integrand is,
by the explicit formula for D3 (u,v; k) in (33.4),

< exp (—1(K/G)?), (36.4)

and H7 is negligible.
Hence we have obtained

Lemma 17. Let h be as in (35.5) with (35.1)—(35.2). Then
we have, for any fixed c, d with u(cd) # 0,

h(kj)
> GRi(50)L (5i1/) cosh
K243 ESp(Lo(ed))

(log K)* | (1 - 12> . (36.5)

32 p
ple

In particular, if A is fixed, we have

o h(k)
Z R(w; A) coshk

(log K)* > " Alc,d) H< —;2),(36.6)

c,d ple

where § + 12 € |, 4 Sp(Io(cd)) with pu(cd) # 0.

Therefore we have established

Theorem. Provided o, > 0 for square-free n and =
0 otherwise, the function Zs(s;A) has infinitely many
simple poles on the line Re s = %

This restriction on the support of «,, will be lifted in our
forthcoming work.

Our result suggests that the Mellin transform

oo
Z3(s;1) = / 1< (5+ it)\ﬁt—Sdt (36.7)
1

should have the line Re s = % as a natural boundary, for
I€]% = [¢]*|¢|* and |¢|? may be replaced by a finite ex-
pression similar to |A|? via the approximate functional
equation. The same was speculated also by a few peo-
ple other than us, but it appears that our theorem is
so far the sole explicit evidence supporting this conjec-
tural assertion. At any event, in view of of REMARK 5
above, it appears reasonable for us to maintain that
Z3(s; 1) does not continue beyond the imaginary axis.

This entails

Problems:

(1) Is the set |J,~;S
(1:00)?

(2) TIs the set of « satisfying (30.3) dense in the positive

p(Io(g)) dense in the half line

real axis?

(3) Is the set of k satisfying (30.3) dense in any half
line?

(4) Ts the set of x satisfying (30.3) dense in any interval
whose left end point is the origin?

Obviously (1) is to be solved first and (2) must be far
more difficult than (1). The third, weaker than (2),
appears highly plausible in the light of Lemma 17; on
the other hand our method does not seem to extend
without new twists so as to include the situation of (4),
i.e., the detection of low lying poles.

ADDENDUM. Recently C.P. Hughes and M.P. Young
(arXiv:0709.2345 [math.NT]) obtained an asymptotic
formula for the mean value (30.1) where the length of
A is less than T with any fixed n < 1/11. They did
not employ the spectral theory of Kloosterman sums.
Our method should give a better result than theirs, if it
is combined with works by N. Watt on this mean value.

References

[1] R.W. Bruggeman. Kloosterman sums (v.5). September 2007.

[2] R.W. Bruggeman and Y. Motohashi. A new approach to the spectral
theory of the fourth moment of the Riemann zeta-function. J.
reine angew. Math., 579 (2005), 75-114.



Y. MOTOHASHI

[3] J.-M. Deshouillers and H. Iwaniec. Kloosterman sums and Fourier
coefficients of cusp forms. Invent. math., 70 (1982), 219-288.

[4] —. Power mean-values for Dirichlet’s polynomials and the Rie-
mann zeta-function. I. Mathematika, 29 (1982), 202-212.

[5] A. Good. The convolution method for Dirichlet series. Contemp.
Math., 53 (1986), 207-214.

[6] D.A. Hejhal. The Selberg Trace Formula for PSL(2,R). II. Lect.
Notes in Math., vol. 1001, Springer-Verlag, Berlin, 1983.

[71 Y. Motohashi. An explicit formula for the fourth power mean of
the Riemann zeta-function. Acta Math., 170 (1993), 181-220.

[8] —. A relation between the Riemann zeta-function and the hyper-
bolic Laplacian. Ann. Scuola Norm. Sup. Pisa. (4) 22 (1995), 299
—313.

[9] —. The Riemann zeta-function and Hecke congruence subgroups.
RIMS Kyoto Univ. Kokyuroku, 958 (1996), 166—-177.

[10] —. The mean square of Dedekind zeta-functions of quadratic
number fields. In: Sieve Methods, Exponential Sums and their Ap-
plications in Number Theory (G.R.H. Greaves, G. Harman, M.N.
Huxley, editors) Cambridge University Press, Cambridge 1997,
pp. 309-323.

[11] —. Spectral Theory of the Riemann Zeta-Function. Cambridge
University Press, Cambridge 1997.

[12] —. A note on the mean value of the zeta and L-functions. XV.
Proc. Japan Acad., 83A (2007), 73-78.



I

I

H AR B T2 R LA 7E ¥ v — Ve 20

i

COEIEIE, HARFH AWM LENIEIED v — FVH
TTAE (DTARE VD) Bl GICEDE, HARFEHITAHM
THWIRATIIE Y v —F v (LTI Y v —F v ewvs) oNE
B, BEFIIOVWTOLEFHEED S,

FOCNE - BRRBEREICOWT
1 WYYy —FLoEsR

NHLEE 7 RIZEDDLWFEY ¥ — F IVOWNERXFTOERIE, K
DEBH LTS,

O e, BEOEKRO—DOOMI L HER LT
b5,

@ /—bEiE WA TEH->TH, #HLWififid 2 H%E
FEHEUHRLT, FHENIELEUNOEAEOH I 24
o ERELEING.

@ #HEE, MANTEELRFER L
KRBT DI 27— 2 fiz, bl
HOHbwmLTHbD., ZOFEHIL, 1
B hZ L TES,

@ WEWMLLE, FHEVREERLEEORER S BED
F, —EOMERFEL L TEEDTHELZDIDOTHA.

2 WYy —FVEEFOER UTHRESLEVD)

FETIE, KZ2OMICE2REROMESE, 2 oM T2

RV LELBDZLOTH Y, METLEAENFEOTITIC
BT,
3 Rtk

WFge Y % — F L DIFFEERE I3,
LHETD.

O HARKFHETEI - HIRSH (s (DUT 535
L) ITERT AE

@  HAKFERFEGIE TR IR, AT RRAE K
O HARFETEROESAE (72720, S B0KH %
BRI E% 5 %)

@ ZAEICh ) EEHE & L CH TSR ICER L, BAEdk
U TH B H

@ WEZES UTRERLV)) PEICREOH

4 JFRER—TH
W9y v — FVONBER GO XTHECERIL, UToLks

Fhiam e @A, ThE
B L THRNY 2 4
H, —#msce LT

%

ROEHDVF A ELT

DET 5.
X 5 — i 3 J— b -
LFEE 15,000 SCFALREE 5000 SCFAREE
HE 10 HAZRE 4 HARE

* WAL, FEEREXTHHRO LkET 5.
5 Aozt

BRRE ML Y 281E, FrEOB TN Y v —F vk
TaHFE®, JBRGER SCE PRI E & & L ISR e
MO(UTHERE VD) IR T 5.

R 21 4F 4 A 1 BiflE
PRk 21 4F 4 H 1 H AT

6 EAROSZN B OSEAT R

MOGEDFATIZE M E L, FEROZH R ORTEIFIE KD
EBVET B, 222l WBETRRUAREERT -1, 21234
LaWwERIE, $EFISEATLI 0D 5.

J5AE D A4S FEAT I
2 AR 6 AR
6 A& 10 Ak
10 AR BED2 AEK
7 ZfHEAR

AR HARERCEN o720 L L ZHEA 1IEE
Heft A2 55 X RASABRA e L72H £ 5.
8 BRI

O ERORMEHIE, —HKRX - P RRERLOY
i3, EERME, £ GE2ED) 1HILECICES 2 5 (X,

£, BHEHAEL) £T5.

@ #HiE, EEM(K, £ 5EAED) 1 BIECNHEE (K,
% BEZzEL) 1#LT5.

@ Hi2EIEWTN L EFEROETT— 5 2T 5.

9 FWmXEEORSE
HOCIEROIREG L, WIZEY v — F VFIATNHE 11 SRIcHD &
BREAEVWET 5.
10 #HFORUE L
HEIWBEOBIE - NERESIZBWT, $EZIZLZBIER
FROFEHAPMAEDO A5 2 0 H UL ER® L2581, ROOK
M HEMDE L, BB AEHCERZAE LT
L. 72720, 1 2EDAICEROFRHMS ZWIEEIL, BESA
DFERECTHERE I WS
11 Rk
FAkHE, Zibiw
12 HERID OB
PEZ I, WM CEOWIERY %, 30 #F TIHEME TR
2. 72720, 0B LM MEFHLET LA, HEE
ML GOEE AT S
ook

(PR TR

114 WmXOBBROTEGI, Ak FIC RO S E#o L,
TEHAEDVWET 5.

2 2%0OEFEOXFHELS IR L E OB A,
FRICHEED 2T THEE B Y RET 5.

3 2ROEFEM CEIHENSME LA, BERIIE
IOEFEEBRY, BRELIKEL, ZoOMHRIETE
RCEHETD.

4 EFHEICBWTEEGOMBEA TSR 2 BEEAR
T4l B0, BESICBWTHERRITH & HE -
FEL, BMULEEE LD,

5 HHHECTHIZEEY v — F VOBEOLE 2 KD 5 -8
B, BESTHEO L, FE L OIS E ik - ET 5.

6 HHEBICBIT WMo A, LM EREITH
LDLT 5.

J/ R



1

H AR B T2 R LA i 7E ¥ v — F )V SRR

AT EAR

ZAERE, MEEE IS THELLLOT, BHIE LT
Microsoft Word THERK L 72 BEF A (UL FERE$5) L35,
EAR OIERERVER T, ROEBY ET5.

O]

®

5
)
)

®

M A X, AdHfER & L, %, FE4, MERLDX—
77— NI, ##F X 1B & L, Microsoft Word @ 43 L %
WATEEIEL T D, AL, BHELHROFERIE, BEHE 2
Bl L, Microsoft Word @ 20 3C5° % 38 47 2 Beill & 2L
L35 AEE, E25mm, F25mm, A 25mm, 45 25mm&
5.
7+ ¥ M, FIZBWCTIEBAA, B Times New Roman
EHARLETS.
LFERA >V ME, FEE 12pt. & L, ZnLAMT 105pt. &
T4, BXROSD%R, hyh), ExErzaemel, KX
BT AEHET 5.
I ER LD NEF

FLRE S

L HE
3) WoUES
4) WSUEH

)
(2)
)
)
5) BROCBE%E
)
)
)

~ o~~~

6) BKXF—7—F
7) AL
(8) ZE MK
(9)

WRSCER S DR
(1) BRcEs
(2) BRCEEL
) WRCCEEE
4) BRLF—7—F
5) AL
6) ZF Lk
(7) 6%
1 =T DfE
FoCEAE, R 2 TR 5.
FWHEHEAE, BA2S VATHIT TR 2 TR T 5.
LEIORICIE, FEHEOHBEZRT 57012, T E TR
FaRfE L, BE(ER) TR A T 5.
FRSCER L, FCEE RS 17 H VTl 2 CRERY
5.
RS H 20, WOCES S 147 H 1 Chdefii 2 CREsky
L. B, FEEDVEROWE, REOFEELLZOHERELY
Ot and TXY)Y, FNLSIT VY TXE) S,
BEZNL, BKOCEEDDS 11TH T T, BilSIFEORLTH
|2 Abstract &35 &, 200words FEEE 2 5 % BB AR L %
LT 5.
F—— i, ME»S 117HIFT, LT Key Words: D
LFHNIAHEE, Swords AN TRLIRT 5.
AL, F—T— 06 117HITCRLET 5.
EBHOFEIE, WEICKROEBYRRET S,

—~

~ o~ o~
w N

4

TR 21 4R 4 1 1 HlE
TR 22454 H 1 HBUE
PR 22 4F 4 B 1 HAEFT

LD E

* HARZFHITEYEICHALER:  HARFH A
TAEWFFR A B i T~ & —

R DYi6, ¥ b

* Department of Materials and Applied Chemistry, College
of Science and Technology, Nihon University ; The
Center for Creative Materials Research, Research
Institute of Science and Technology, College of Science

and Technology, Nihon University

ARILDEE

M- JHIE, ROEBHETDH KL, enEThrS
LATE8AT L Cat#i s .

o FRE
= 1. 2. 3 T g
F 11 12 13 o -
T 111 112 113 | (10K 5 130FH
@ AJEA

o, & o~( )&yt R ) EFET .
BRI, A < () EEREYF FOREHT 5.

® #¥

(1) FEANE LCERET (77T CEA) 2 H3 5.

(2) #GB, B, BEA%RIGERT YT 5.

(3) #—12, 2, —D2H, ZoHAR Y,
FIEHRBT CEA) THR—3 5.

i OCH T

@ MEFE

1) HERUFERIE, WREEZELEeRXEE LTI
AT .

(2 M (777, SN, 5FEE) & K1, M2 L LT, £
OWICKOFEE LT 5. MoOFF ROEREILZ, Ko
TS 2FEAIE 5.

(3) #iF, #£1, E2LLTZORIZEOEEZTRT . &£
DOFF R OFEEL, FOLICRHKRTLZEZEAIET 5.

4) 79 7 OBEMOFEMIIHEEE T, #HEITH»5 B
M2 AN ENE NIRRT 5.

Bl @MV ZOTH (N - m)
Distance from wall (Jy ] (em]) ¥[JFlZ0 & o<
RPN

(5) MESEMOLH? SERHT L25E61E, FHEOHMLICE

WTHERFT#5T, 2olE*WRTs 2 L.

® HEEEZZENZNFRTHROLNIZD O, T HATLIERE

JIS) DIE#EEA VL. FASIHATHLSEL TS
Zk.

B3, EFSEALT % b5 SI(Systeme International d' Unites)
&5, HARFIZowTE, #NEho%a Tl L2z
b0, T J1SZ8202(1974), wiako> SI, # L < & DIN1304
Allgemeine Formelzeichen (1968) # &84 5.

@ BELMOFKL

() XWoARTOFIREFIZ, AREY -2 -7 Y ok)yic
Fryazf L CHETEREET 2.

(2) FRLFFSNMIHIELT ST L.



(D

Lk b oy
WEIFLEMOGEARE L, O3 A sy n+E& %
BEET HG LS, B (OO0 R)F LN E
EE95.

(2) BT FHETOAZMHATLOOL T 570, HHET

ThoTHFIFIMIMEHL v, 2720, WUREEH
LTHHHEFEISNOEF R L 21T 5200
B, VEELDLZBDET D,

(3) D%iL, FABIPVIZE D, 72720, HREREH S A

FTEXELT 5.

5 ZEUMOEE

©)

&)
®

THOFET1E 1 LT EICELETE L, Ay 3zl
THEZZLRT 5.
Fl—OFEFPREIEBOZFEEILEIRLERERL T DY
&, L, FATOEVIES L FLT 5 .

IR DR

- GRXomE) EEA GETHE) L WA, EWAOUE
MERES, BEL BEL N—UHL
(1)
D g #W (2002) @ “FEERIE RO RERBR
A A A S A, 4 68 %5, %5 666 7, pp.189-195.
- (BITRORE) EES GETE) WY, AT
(1)
2) N BEERE (2003) @ BEEOMELY, AERAL

@  BRSCCHRD FFL

(1) FEXT, BEOWEIE, BT HROL = v,

(2) FHLHVBEBLOLE I, 1FROZEBEONT, 4RO

L=y v, 2FHOEZEDA =Y v )b . BT and &
DFEHDA =2 vV HF (HTFO®HRIIE, VA F&L)

- G omE) EERES GETE) L RO, B

Mkt ((y 0w 2), B8 7% ~—Y#

(1)

1) Craig, J. (1999) : “Weight Estimates and Control”, in G.
A. Khoury and J. D. Gillett (eds.), Airship Technology,
Cambridge, Cambridge University Press, pp.235-271.

2) Potvin, ], G. peek and B. Brocato (2003) : “New Model
of Decelerating Bluff-Body Drag”, Journal of Aircraft,
Vol40, No.2, pp370-377.

- (HATROYE)  FEA GETE) WY, T, %

ATHT.

(1)

3) McRuer, D, I Ashkenas and D. Graham (1973) :
Aircraft Dynamics and Automatic Control, Princeton,
Princeton University Press.

- (WWW oM E) 77 7% =% (%174)  HWa,

www 7 FL A,

(1)

4) Selig, M. S. (1998) : “UIUC Airfoil Coordinates Data-
base”, UIUC Airfoil Date Site, URL : http://www.ae.
illinois.edu/m-selig

® AHIEY ¥ —F IV OEKCERL OWEFR
J. Res. Inst. Sci. Tech., Nihon Univ.



gk G A &}
% 5 EIZWMAFHAES Y —TLEBRREE
LMo E &
S &
K4 I
1 * B s
. S
2 JFRofEE . —fGa /— b HE O RAWRNX #YUT35010)
3 JRRROME . AR e X # ( ) BE H ( ) & H ( )
17—l E T HREBEOH D5 EITAMET () ITEEEFTLALTTI,
BiE~—, BT —HRO® 55 IXRZEEZFRTL2HE5013H 0 £,
4 FEFEH  KELABFMAARROEEE, EEEBNL TIFHALIEE N,
AVARYT 4 A=Y=, %) BEEMT TR,

[ B1EE4 m—vg ( )
g ( ) “rs ( )
Organization ( ) Title ( )
E-mail ( ) Tel. ( )

M) 52 EHAL m—<5 ( )
g ( ) “h ( )
Organization ( ) Title ( )
E-mail ( ) Tel. ( )

[ E3EFEEA m—vi ( )
g ( ) “rs ( )
Organization ( ) Title ( )
E-mail ( ) Tel. ( )




il

JEH
ARZLUNOETE & 5 ARREHIER O E T, AFRFREOZEISE TS ET,

T

i A
M H

K 4 R "o SLNS

F T

Tel.

E-mail

£

al

Tel.

E-mail

£ BT

all

Tel.

E-mail

£ P

!

Tel.

E-mail

F BT

I

Tel.

E-mail

P 2 30 FBE TIHERMI Y 2 MR TR L3, BN E ZHEOLE (FHAH) il

FEEE OREHB & LT, LRROFEFEORFMEARB W LET, KEMEDPELEOHE DR >
P K4 F

WRFGRZAMR PR A &







Editorial committee of

Journal of Research Institute of Science and Technology, College of Science and Technology

Chairman Takashi SAWAGUCHI
Editor-in-Chief Kunio YASUDA
Editorial Members Masaaki NAKAMURA

” Yoshihiko MAENO

” Misaki IZAWA

s Kiyoaki ONO

” Kazuo FUJIKAWA

” kazuo USUGI

” Toshihiro IRIE

7 Shinichiro OHNUKI

” Joe OTSUKI

” Shinnosuke TADOKORO

” Shinji SATOH

” Sei TAKAHASHI

” Takeshi NTHEI

” Ryoji KASAGAWA

” Hideo SHIMAMURA
Managing Editors  Reiko TSUCHIYA

v Tomoya WAKAMAKI

Department of Materials and Applied Chemistry
Department of Aerospace Engineering
General Education

Department of Civil Engineering

Department of Transportation Engineering and
Socio-Technology

Department of Mechanical Engineering

Institute of Quantum Science

Department of Architecture

Department of Precision Machinery Engineering
Department of Electrical Engineering
Department of Materials and Applied Chemistry

Junior College - Department of Construction

Department of Oceanic Architecture and
Engineering

Department of Electronics and Computer Science
Department of Physics

Department of Mathematics

Research Affairs Section

Research Affairs Section

Research Affairs Section

HAK 22 TR B CARF FEe e ¥ v — F- )b 2% 119 5 2009 4

SPIR 21 4R 12 10 H o FEA
P21 AR 12 H 17T B AT

LT = B N 2 B S B 2 A
T101-8308  HUHURTAUH X MHELTA 1 T H 8 Fi
TEL : 03-3259-0929 FAX : 03-3293-5829

E-mail: skenkyu@adm.cst.nihon-u.ac.jp

URL  http://www.kenjm.cst.nihon-u.ac.jp
FURIAT s pkaatt




JOURNAL

RESEARCH INSTITUTE OF SCIENCE AND TECHNOLOGY
COLLEGE OF SCIENCE AND TECHNOLOGY
NIHON UNIVERSITY

Number 119

ORIGINAL PAPERS

Codes of Split type eoreererrmrrmrrareeeeneneneanen. Maro KIMIZUKA and Ryuji SASAKI 1

Transport Sector Marginal Abatement Cost Curves in Computable General
Equilibrium Model
-------------------- Atit TIPPICHAIL Atsushi FUKUDA and Hisayoshi MORISUGI 15

The Riemann Zeta-Function and Hecke Congruence Subgroups. II
................................................................................. YOIChl MOTOHASHI 29

DECEMBER, 2009

s

!
e

it



	日大理工119_表1
	日大理工119_表2
	本文01-70
	日大理工119_表3
	日大理工119_表4

