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Codes of split type

Maro KIMIZUKA1 and Ryuji SASAKI 2 3 *

Abstract

    Generalizing a way to construct Golay codes, codes of split type are defined. A lot of interesting codes, for 
example, extremal codes of length n # 40 such as Golay codes and binary doubly even self-dual codes [48, 24, 12], 
[72, 36, w] with w $ 12, are represented as codes of split type.
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1.    Introduction

The MOG array was discovered by R.T. Curtis [4], 

and it is recognized to be one of the greatest object for 

investigations involving the Mathieu group M24. In his 

paper [2] Ch.11, J.H.Conway gives a nice description for 

constructing the Golay codes. His works inspired us to 

generalizing Golay codes. As such a code, we introduce 

a code of split type, which is defined by the following 

way, i.e., let F l/F be an extension of finite fields, and let

I : F n −→ F k # n,   L : F k # n −→ ]F lgn

be linear maps such that L has a set-theoretic section T. 

Here F k # n is the space of k # n matrices with coefficient 

in F. For subsets B 1 F n and D 1 ]F lhn, the linear code 

C ]B, Dg = GI]Bh, T]DgH in F k # n is called a code of split 
type. The binary and ternary Golay codes are in fact 

codes of split type. Fairly many codes are represented as 

codes of split type. We shall show some of them as 

examples.

The contents of this article is as follows. After we 

define codes of split type in ?2, we shall discuss three 

kinds of codes of split type. A fundamental case is 

discussed in ?3, and in the following ?4 we shall unify 

the arguments developed in [6] Ch.5 and Ch.7, as a 

result, we shall obtain generalizations of Golay codes. 

Such a code has a criterion which characterizes codewords. 

In the case of the binary Golay code, such a criterion is 

called the Miracle Octad Generators. For each n = 8l 

with l # 5, a binary extremal singly or doubly even and 

self-dual code with length n is represented as a code of 

split type.

In ?5 generalizations C3]B, Dg of Turyn’s construction 

(cf. [2], Ch.11) will be given as a kind of codes of split 

type. Here we emphasize that our code C3]B, Dg is a 

slight generalization of a cubic self-dual binary code 

given in [1]. In fact, a cubic code is defined for an 4

-linear code D, however our C3]B, Dg is definable for an 

additive code D. We shall represent several binary or 

quaternary self-dual codes, for example, binary doubly-

even self-dual codes [48, 24, 12] and [72, 36, w] with w $ 

12 as codes of split type.

A code C ]B, Dg of split type has automorphisms 

induced by those of B and D. We shall discuss such 

automorphisms of codes of split type in ?6. Lastly we 

shall touch M-matrices of codes of split type. We hope 

that a study of automorphisms and M-matrices of codes 

of split type contribute to further investigation, such as 

showing the uniqueness of the code [48, 24, 12], of codes 

of split type. T. Kondo ([12]) introduces M-matrices of 

the Steiner System S ]5, 8, 24g and uses them as a base 

for a story of Mathieu groups. In [9] and [11], we define 

M-matrices of the ternary Golay code and give 

applications of them. For further applications of 

M-matrices, we refer to [13], [8] and [10].

2.    Codes of split type

Let p be a prime number. We denote by q the finite 

field with q = p f elements. The inner product of vectors 

J. Res. Inst. Sci. Tech., Nihon Univ. No. 119 pp. 1-14
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u = ]u1, ∙ ∙ ∙ , ung, v = ]v1, ∙ ∙ ∙ , vng ! ] qgn is defined by

 ]u, vg = ! ui v
v
i ,

where v is the identity of q or the involution in Aut] qg 
if it exists. For a vector u ! n

q , the weight wt ]ug of u is 

the number of non-zero components of u. A 

k-dimensional subspace of ] qgn is called an [n, k] code 

over q. For an [n, k] code C, its dual C = = "u ! ] qgn | 

]u, vg = 0]∀v ! Cg, is an [n, n - k] code. If C 1 C =, C 

is said to be self-orthogonal, and if C = C =, then C is said 

to be self-dual. For an p-linear subspace C of n
q , C is 

said to be even (resp. singly-even, doubly-even) if "wt]ug | 
u ! C, 1 2  (resp. 1 2  and 1 4 , 1 4 g. The 

minimum of the set "wt]ug | 0 = u ! C, is called the 

minimal distance of C. An [n, k] code with minimal 

distance d is called an [n, k, d] code.

Now we shall define a code of split type. Let p be a 

prime number, and put q = p f , q l = p f l with f | f l. For 

positive integers a and b, we denote by ] qga # b the space 

of a # b matrices with coefficients in q. We fix a subset 

K = "~1, ∙ ∙ ∙ , ~k, of the field q l satisfying

(1)  !~ i = 0, and q l = q ]Kg.
Let

 l : ] qgk # 1 −→ q l

be an Fq-linear map defined by

 l ]t ]x1, ∙ ∙ ∙ , xkgg = !~ i x i.

Then the direct sum

 L = 5 n
i = 1  l  : ] qg k # n −→ ] q lg n

is an q − linear map. Let

 T : ] q lg n
−→ ] qg k # n 

be a set-theoretic section of L. 

Let

 k : q −→  ] qg k # n ,   k ]xg = t]x, ∙ ∙ ∙ , xg,
and let

 I =5
n
i = 1  k : ] qh n −→ ] qg k # n.

n

i = 1

n

i = 1

k

i = 1

k

i = 1

k

i = 1

k

i = 1

Then, by (1), we have L & I = 0.

If we define an q-linear map s : ] qgk # 1  −→ q by

 s ]t ]x1, ∙ ∙ ∙ , xngg = ! x i,

then s & k ]xg = kx for x ! q. We denote by S the direct 

sum 5 ns :

 S = 5 ns : ] qg k # n −→  ] qg n .

For subsets B 1 ] qg n and D 1 ] q lg n, we define the 

linear code C ]B, D; I, Tg by

C ]B, D; I, Tg = GI ]Bg, T ]DgH
q
 1 ] qg k # n.

We call C ]B, D; I, Tg the code of split type associated 

with B, D, I and T.

Collecting our notation together, we have the 

following:

  I   L

(2) ] qg n  D  ] qg k # n  D     ] q lg n ,

 ∪  S  ∪  T  ∪

 B   C ^B, D; I, Tg   D

  S & I = k : id ,    L & T = id ,    L & I = 0.

Here we give an interesting example of a code of 

split type.

Example 1 ([2] Ch.12) Let P and L be the point code and 

the line code, respectively. They are isomorphic to the 

Hamming [8, 4, 4] code. Put

 K = #
4 = "~1 = 1, ~2 = ~, ~3 = ~2 = ~−,.

Define s : 4 −→ ] 2g3 # 1 by

 s ]a~ + bg = t ]]a + bg, b, ag, a, b ! 2  .

Then S = 5
8
i = 1  s is a section of the linear map L : ^ 2g3 # 8 

−→ ] 4g8 . Put B = P, D = L 7 4  .

Then C ]B, D; I, Tg is the binary Golay code. This is 

so-called Turyn’s construction.

3.    Case I

According to choices of a set K or a section T, we 

obtain various codes of split type. In this section, we 

shall discuss in the following situation: Let the notation 

k

i = 1

k

i = 1
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be as in ?2, if the contrary is not stated. We take the 

field q l as a set K = "~1 = 0, ~2, ∙ ∙ ∙ , ~k,; hence k := 

|K | = q l.

Define a section of the linear map L by the direct sum

 T1 = 5 n
i = 1  t : ^ q lh n −→ ^ qh k # n,

of

 t : q l −→ ^ qhk # 1,    ~ i −→ ^~ ih
where ^~ ih is the column vector whose i-th component 

is 1 and the others are 0. As usual, let

　" e1 = ]1, 0, 0, ∙ ∙ ∙ , 0g, e2 = ]0, 1, 0, ∙ ∙ ∙ , 0g, ∙ ∙ ∙ , 
en = ]0, 0, ∙ ∙ ∙ , 0, 1g,

be the standard basis of the vector space ] qgn .

By the definitions, we have the following:

Lemma 1     1. ]I ]e ig, I ]e jgg = | q l |d i j = 0,

2. If d ! ] q lg n, then ]I ]e ig, T1]dgg  = 1,

3.  ]T1]dg, T1]dlgg = n - wt ]d - dlg for vectors d and 

dl of ^ q lg n.

First we discuss in the following situation:

    q = 2, q l = 4, K = 4 = "0, 1, ~,  ~−,, 

    B = Ge1 - e2  , ∙ ∙ ∙ , e1 - enH.

For an 2-linear subspace D 1 n
4 , let C1]Dh = C ]B, D; 

L, T1h be a code of split type.

Lemma 2 Assume that D is even. Then, for any vectors d 

and dl in D, we have

 T1]dg + T1]dlg + T1]0g + T1]d + dlg ! I ]Bg.
If "d1, ∙ ∙ ∙ , dm, is a basis of D over 2  , then the set

X = " I ]e1 - e2g, ∙ ∙ ∙ , I ]e1 - eng, T1]0g, T1]d1g, ∙ ∙ ∙ , 
T1]dmg,

is a basis of C1^Dh  over 2  . In particular, we have

 dim C1^Dh = dim  ^Dh + n.

Proof. We denote by I n the set "1, 2, ∙ ∙ ∙ , n,. For

 d = ^d1, d2, ∙ ∙ ∙ , dnh,    dl = ^d l1, d l2, ∙ ∙ ∙ , d lnh,
we define subsets a, b, c and c l of I n by

　　a := "i ! I n | 0 = di = d li = 0,,

　　b := "i ! I n | di = d li = 0,,

　　c := "i ! I n | di = 0, d li = 0,,

　　c l := "i ! I n | di = 0, d li = 0,.

Since D is even, it follows that |a | + |b | + | c | and |a | + 

|b | + | c l| are even; hence | c | + | c l| is even. Here, |a | is 

the cardinality of the set a, etc. On the other hand, 

| supp]d + dlg | = |a | + | c | + | c l| is even. Thus |a | is 
even. If i ! a, then "di, d li, di + d li, = "1, ~, ~−, and the 

i-th column of

 A := T1]dg + T1]dlg + T1]0g + T1]d + dlg
is t ]1, 1, 1, 1g. If i ! a, then one of the following three 

cases holds:

 1. di = d li,    2. d li = 0,    3. di = 0.

Therefore the i-th column of A is t ]0, 0, 0, 0g. Hence

 A = ! I ]e ig ! I ]Bg.
Thus we obtain the first part of the Lemma. In 

particular, the set X generates the code C1^Dh.
Now we shall show that X is linearly independent 

over 2  . Set b i = e1 - e i  . Suppose that

  !b i I ]b ig + ! d j T ]d jg = 0    ^d0 = 0hh
with b i, d j ! 2  . Since L & T1 = id  and L & I = 0, 

applying the linear map L for this equation, we get

  ! d j d j = 0.

Therefore d1 = ∙ ∙ ∙ = dm = 0. Thus we have

  !b i I ]b ig + d0T ]0g = 0.

If d0 = 0 then we have T1]0g = I ]bg for some b ! B. 

By the definition of I, this is absurd; hence d0 = 0. 

Therefore we have

  !b i I ]b ig = 0.

Since I is injective, we get b2 = ∙ ∙ ∙ = bn = 0. Thus X is 

linearly independent over 2  ; hence we have the last 

assertion.  □

i ! ai ! a

n

i = 2

n

i = 2

m

j = 0

m

j = 0

m

j = 1

m

j = 1

n

i = 2

n

i = 2

n

i = 2

n

i = 2
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Proposition 3 Let q = 2 and q l = 4 and assume that n $ 4 

and n is even. Let D be an n-dimensional 2-subspace of 
n
4   such that each element in D is even weight. If n ≡ 0 

(resp.2) (mod 4), then the code C1^Dh is a binary, self-dual 

and doubly (resp. singly) even [4n, 2n, d] code with d $ 4. 

Further if n $ 8 (resp. n = 6) and the minimal distance of 

D is greater than or equal to 4, then C1^Dh is a [4n, 2n, 8] 

(resp.[24, 12, 6])-code.

Proof. By Lemma 1 and Lemma 2, C1^Dh is a 

2n-dimensional self-dual code. Any codeword of C1^Dh 
is written in the following forms:

I ]bg,   T1]dg,   I ]bg + T1]dg,   I ]bg + T1]0g + T1]dg
 ]b ! B, d ! Dg.

Then we have

wt ]I ]bgg = 4wt ]bg, wt ]T1]dgg = n,

wt ]I ]bg + T1]dgg  = n - wt ]bg + 3wt ]bg 
= n + 2wt ]bg.

Moreover, wt ]I ]bg + T1]0g + T1]dgg is equal to

4 | supp ]bg - supp ]dg |   + 2 | supp ]bg ∩ supp ]dg |
+ 2 | supp ]dg - supp ]bg | .

Since D is even, it follows that this is a multiple of 4. By 

these calculations, we get our assertions. □

Example 2 (Binary singly-even self-dual [24, 12, 6] code) 

Let D = H be the Hexacode,i.e.,

      H = "]a, b, c, z ]1g, z ]~g, z ]~−g | a, b, c ! 4, 

z ]xg = ax2 + bx + c, 1 ^ 4h6.

Then C1^Hh is a binary, singly even and self-dual [24, 12, 

6] code with weight distribution:

weight 0 6 8 10 12 14 16 18 24

# 1 64 375 960 1296 960 375 64 1

Example 3 (Binary doubly-even self-dual [32, 16, 8] 

code) Let H8 be the Hamming code and D = H8 7 4  . 

Then C1^Dh is a binary, doubly even and self-dual [32, 16, 

8] code with weight distribution:

weight 0 8 12 16 20 24 32

# 1 620 13888 36518 13888 620 1

Example 4 (Binary singly-even self-dual [40, 20, 8] code) 

Let D be an even [10, 5, 4] code over 4  . For example, if 

D is generated by

        d1 = 1111000000,   d2 = 0011110000, 

        d3 = 0000111100,   d4 = 0000001111,

        d5 = 1212121212

where 2 = ~. Then, C1^Dh is a binary singly even self-dual 

[40, 20, 8] code with weight distribution:

weight 0 8 10 12 14 16 18

# 1 285 1024 11040 46080 117090 215040

20 22 24 26 28 30 32 40

267456 215040 117090 46080 11040 1024 285 1

Secondly, we are in the following situation:

 q = q l = 3,   B = Ge1 - e2  , ∙ ∙ ∙ , e1 - enH.

and I, L, T1 are the same as before.

By the same way as the above, we have the 

following, so we shall omit their proofs:

Lemma 4 Assume that each codeword d of D satisfies 

wt ]dg ≡ 0  ]mod 3g. Then, for any d and d l from D, we 
have

 T1]dg + T1]-dg + T1]0g, T1]dg + T1]d lg + T1]0g + 

T1]d + d lg ! I ]Bg.
In particular, if "d1, ∙ ∙ ∙ , dm, is a basis of D, then the set 

X = "I ]e1 - e2g, ∙ ∙ ∙ , I ]e1 - eng, T1]0g, T1]d1g, ∙ ∙ ∙ , 
T1]dmg, is a basis of the code C1]Dg over 3  ;

 dim C1]Dg = dim  ]Dg + n.

Proposition 5 Let q = q l = 3 and assume that n ≡ 0 (mod 

6). Let D be an n/2-dimensional code in ] 2g n satisfying 

wt ]dg ≡ 0 ]mod 3g for any d ! D. Then C1]Dg is a [3n, 
3n/2, 6]-code.

4.    Case II

In this section we shall unify the arguments developed 

in [6] Ch.5 and Ch.7 and give a generalization of Golay 

codes. Our situation is the same as (2), and assume

           (A)   q = 2, q l = k = 4; n : even
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or

           (B)   q = q l = k = 3; n ≡ -2 (mod 6).

Set 4 = "~1 = 0, ~2 = 1, ~3 = ~, ~4 = ~2, and 3 = 

"~1 = 0, ~2 = 1, ~3 = -1,.

By the definition, L ]I ]e1gg = 0; hence the map

 T2 : ] q lg n −→ ] qg k # n

defined by T2]dg = T1]dg + I ]e1g is also a section of the 

linear map L : ] qg q l # n −→ ] q lg n.

For a linear code B in ] qh n and an q-linear 

subspace D of ] q lg n, we denote by C2]B, Dg the code 

C ]B, D; I, T2g of split type. The following lemmas are 
proved by the same way as in the previous section:

Lemma 6

]T2]dg, T2]dlgg = 2 + n - wt ]d - dlg
  ^d, dl ! ^ q lh nh.

Lemma 7 If "b1, ∙ ∙ ∙ , b l, is a linearly independent subset 

of B and "d1, ∙ ∙ ∙ , dm, is a linearly independent subset of 

D over q, then the set

 "I ]b1g, ∙ ∙ ∙ , I ]b lg, T2]d1g, ∙ ∙ ∙ , T2]dmg, T2]0g,
is linearly independent over q. In particular,

 dim C2]B, Dg $ dim  ]Bg + dim  ]Dg + 1.

Theorem 8 Assume that the following conditions are 

satisfied:5 n
i = 1  l

(C1)  ! n
i = 1  bi = 0 for every b = ]b1, ∙ ∙ ∙ , bng ! B,

(C2) wt ]dg ≡ n + 2 ]mod pg for every d ! D.

Then we have

(3)  dim  ]Bg + dim  ]Dg+ 1 # nk/2.

If the equality (3) holds, for example dim  ]Bg = n - 1 

and

(4)  dim  ]Dg =                 ,

then the code C2]B, Dg is self-dual and

dim  ]C2]B, Dgg = nk/2 = dim  ]Bg + dim  ]Dg + 1.

In this case, if "b i | 1 # i # dim  ]Bg, is a basis of B and 

"d j | 1 # j # dim  ]Dg, is a basis of D, then the set "I ]b ig, 

n]k - 2g
2

n]k - 2g
2

T2]d jg, T2]0g | 1 # i # dim  ]Bg, 1 # j # dim  ]Dg, forms 
a basis of C2]B, Dg.
Proof. We denote C2]B, Dg by C. By Lemma 6 and ]C1g, 
]C2g, we have

1. ]I ]bg, I ]blgg = 0 ]∀b, bl ! ] qg ng,
2. ]I ]bg, T2]dgg = !n

i = 1  bi = 0 ]∀b ! B, d ! ^ q lh ng,
3.  ]T2]dg, T2]dlgg = n + 2 - wt ]d - dlg = 0 ]∀d, dl 

! ] q lg ng.
Hence we have C 1 C =. By Lemma 7, we have

    dim  ]Bg + dim  ]Dg + 1 

 # dim  ]Cg
(5)

   # dim  ]C =g 
 # nk - ]dim  ]Bg + dim  ]Dg + 1g.
Thus we have

 dim  ]Bg + dim  ]Dg + 1 # nk/2.

If the equality holds here, by (5), we have

 C = C =, dim  ]Cg = kn/2.

 □
Now we fix a code

 B = Ge1 - e i | 2 # i # nH.

Then B satisfies the condition ]C1g. In the case ]Ag, let 

D be an even 2-linear subspace of ^ 4h n of dimension n. 

On the other hand, in the case ]Bg, let D be an 3-linear 

code in ] 3g n, with dim  ]Dg = n/2, such that "wt ]dg | d 

! D, 1 3 . Then the code D satisfies the condition ]C2g 
and (4). We denote by C2]Dg the code C ^B, D; I, T2h of 

split type. By Theorem 8, C2]Dg is self-dual and

 dim  ]C2]Dgg = nk/2 = dim  ]Bg + dim  ]Dg + 1.

The codewords of the code C2]Dg are determined in 

the following way: this is no less a criterion than MOG 

or MINIMOG (cf. [2] Ch. 11).

Theorem 9 Under the above situation, the following hold:

C2]Dg  = GI ]Bg, T1]0gH = ∩ L-1]Dg
 = "x = ]x i jg ! ^ qh k # n | 

          ! x i l = -  ! x1 j]∀lg, L ]xg ! D,.
k

i = 1

k

i = 1

n

j = 1

n

j = 1
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Proof. Let

 W = GI ]Bg, T1]0gH =.

By lemma 7, we have dim  ]Wg = nq l - ]dim  ]Bg + 1g 
= n]k - 1g. Consider the restriction of the linear map L 

to W:

 L | W : W −→ n
q l 

We shall show that L | W is surjective. Take any d ! n
q l , 

then, by lemma 1, ]T2]dg, T2]0gg = n + 2 - wt ]dg. 
Therefore if we set w = T2]dg + aI ]e1g with a = wt ]dg 
- n - 2 , then we have, by Lemma 6,

       ]w, T2]0gg  = ]T2]dg + aI ]e1g, T2]0gg 
= n + 2 - wt ]dg + a = 0.

Let b = ]b1, ∙ ∙ ∙ , bng ! B, then, by the condition ]C1g, 
we have ]w, I ]bgg = ]T2]dg, I ]bgg =  !n

i = 1  bi = 0. Thus 

w is contained in W and L ]wg = L ]T2]dg + aI ]e1gg = d; 

hence L | W is surjective.

We denote by U the kernel of the linear map L|W. 

Since

                 dim  ]Wg = nk - (dim  ]Bg + 1g, 
dim  ] n

q lg = | q l : q |n,

it follows

    dim  ]Ug  = nk - ]dim  ]Bg + 1g - | q l : q |n 

= n]k - 1 - f lg = n.

Since C2]Dg is self-dual, it follows C2]Dg 1 ]L | Wg-1]Dg. 
Thus, by Theorem 8 we have

dim  ]]L | Wg-1]Dgg = dim  ]Ug + dim  ]Dg
 = n +                 = nk/2.

Therefore we have C2]Dg = ]L | Wg-1]Dg. Thus we have 

shown the first equality.

For a matrix x = ]x i jg ! ] qg k  #  n, we have

 ]x, I ]e1g - I ]e lg) = ! x i 1 -  ! x i l

and

]x, T2]0gg = ]x, I ]e1g + T ]0gg = ! x i 1 +  ! x1 j .

Therefore, by the first equality, we have the second one.

n]k - 2g
2

n]k - 2g
2

k

i = 1

k

i = 1

k

i = 1

k

i = 1

k

i = 1

k

i = 1

n

j = 1

n

j = 1

 □

Example 5 (The binary Golay code) Let q = 2, q l = 4, n 

= 6, and D the Hexacode H. Then C2]Hg is the extended 

binary Golay code [24, 12, 8] with weight distribution:

weight 0 8 12 16 24

# 1 759 2576 759 1

Example 6 (The ternary Golay code) Let q = q l = 3, n = 

4 and D the Tetracode T , i.e,

T = "(a, b, z ]1g, z ]-1gg| a, b ! 3, z ]xg = ax + b, 

 1 4
3  

Then C2]T g is the extended ternary Golay code.

Example 7 (Hamming code) Let q = 2, q l = 4, n = 2 and 

let D be a code in 2
4   spanned by G]1, 1gH or G]1, ~gH over 

4. Then C2]Dg is the Hamming [8, 4, 4] code.

Now we shall investigate the minimal distance of a 

code C2]Dg.
Theorem 10 Assume that q = 2 and q l = 4. Suppose n $ 6 

and n is even. Furthermore, assume D is an even n 

dimensional 2-linear subspace with minimal distance w $ 

4. Then the code C2]Dg is a self-dual binary [4n, 2n, 8] 

code. Moreover, if n ≡ 2 (resp. 0) ]mod 4g, then C2]Dg is 
doubly (resp. singly) even.

Proof. Let d be the minimal distance of C2]Dg. Since the 

weight of I ]e1g + I ]e2g ! C2]Dg is 8, it follows d # 8. 

Let x = ]x i jg be an element in C2]Dg with wt ]xg = d. By 

Theorem 9, the value ! k
i = 1  x i j = - ! n

j = 1  x1 j does not 

depend on the choice of j. We call this value the parity 

of x and denote by parity ]xg. If parity ]xg = 1, then x has 

at least one point in each column. Hence if n $ 8, d = 

wt ]xg $ 8. In the case when n = 6, if x has one point in 
each column, by parity ]xg = 1, then the weight of L ]xg 
! D has to be odd. Since D is even, this cannot occur. 

Therefore d = wt ]xg $ 8. Assume x has parity 0. Then if 

the coordinate of L ]xg at i is not 0, then the number of 

non-zero components of x in the i-th column is two. 

Therefore wt ]xg = 2wt ]L ]xgg + 4a $ 8. Here a is the 

number of columns in which every components of x is 1. 
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Thus we have proved the former.

Now we shall prove the last assertion. If x ! C2]Dg 
has even parity, then we already know that wt ]xg ≡ 0 

(mod 4). Assume that x has odd parity. Set

1.  b1 is the number of columns i where x1 i = 1 and two 

of "x2 i, x3 i, x4 i, are 1,

2.  b2 is the number of columns i where one of "x2 i, x3 i, 

x4 i, is 1,
3.  b3 is the number of columns i where x1 i = 1 and all 

of "x2 i, x3 i, x4 i, are 0,

4.  b4 is the number of columns i where x1 i = 0 and two 

of "x2 i, x3 i, x4 i, are 1.

Since L ]xg has even weight, b1 + b2 has to be even. By 

parity ]xg = 1, b1 + b3 is odd. Therefore b2 + b3 is odd; 
hence b1 + b4 = n - ]b2 + b3g is odd. Thus we have

 wt ]xg = n + 2 ]b1 + b4g ≡ n + 2   ]mod 4g.
Hence we have the last assertion. □

Example 8 (Binary singly-even self-dual [32, 16, 8] code) 

Let q = 2, q l = 4. Let D 1 8
4 be a singly even self-dual [8, 

4, 4] code over 4 dened by

D = "( a, b, c, d, b + c + d, a + c + d, a + b + d, 

a + b + c) | a, b, c, d ! 4,.

Then C2]Dg is a binary singly even self-dual [32, 16, 8] 

code with weight distribution:

weight 0 8 10 12 14 16

# 1 364 2048 6720 14336 18598

18 20 22 24 32

14336 6720 2048 364 1

Example 9 (Binary doubly-even self-dual [40, 20, 8] 

code) Let D be the even [10, 5, 4] code over 4 in 

Example 4. Then C2]Dg is a binary doubly even self-dual 

[40, 20, 8] code with weight distribution:

weight 0 8 12 16 20

# 1 285 21280 239970 525504

24 28 32 40

239970 21280 285 1

Similarly, we have the following:

Theorem 11 Let q = q l = 3, and n $ 4 with n ≡ -2 (mod 

3). Assume that D is a ternary [n, n/2, w] code which 

satisfies wt ]dg ≡ 0  ]mod 3g for each d ! D with w $ 3. 

Then C2]Dg is a ternary self-dual [3n, 3n/2, 6]-code.

5.    Case III

We are still in the situation (2) of ?2. Furthermore, 

let  be a subfield of q and assume that the section T 

of L is an  -linear map.

For an q-subspace B 1 ] qg n and an -subspace 

D 1 ] g n, let C ]B, D; I, Tg be a code of split type.

Lemma 12 Assume that T ]Dg 1 ] g k # n. If d1, d2, ∙ ∙ ∙ , 

dm are linearly independent vectors in D over  , then 

T ]d1g, T ]d2g, ∙ ∙ ∙ , T ]dmg are linearly independent over 

q.

Proof. Since T is an injective  -linear map, it follows 

that T]d1g, ∙ ∙ ∙ , T]dmg are linealy independent, in ] g k # n, 

over . This means that the rank of the matrix consisting 

of the vectors T ]d1g, ∙ ∙ ∙ , T ]dmg in ] g kn ]- ] g k # ng 
is m. Therefore they are linearly independent over q.

  □

Lemma 13 Assume that T ]Dg 1 ] g k # n, S & T = 0 and k 

! #
p . Then

 dim  C ]B, D; I, Tg = dim  B + dim  D.

Proof. Let "b1, b2, ∙ ∙ ∙ , b l, be a basis for the code B 

over q and "d1, d2, ∙ ∙ ∙ , dm, be a basis for the subspace 

D over . Then the set "I ]b ig; T ]d lg, is linearly 

independent over q. In fact, if they satisfy

  !a i  I ]b ig +  !b j  T ]d jg = 0   ]a i  , b j ! qg,
then, applying the q-linear map S, we obtain

 k !a i  b i = 0.

Here we used the relation S & I = k : id  and S & T = 0. 

Since the set "b i, is a basis and k ! #
p , it follows that 

a1 = a2 = ∙ ∙ ∙ = a l = 0. Therefore we have

  !b j  T ]d jg = 0.

l

i = 1

l

i = 1

m

j = 1

m

j = 1

l

i = 1

l

i = 1

m

j = 1

m

j = 1
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Now applying Lemma 12, we have b1 = b2 = ∙ ∙ ∙ = 

bm = 0. Therefore the set "I ]b ig, S ]d jg, is linearly 

independent.

Any element d ! D can be written in the form

 d =  ! c j  d j   (c j !  ).

Since T is  -linear, we have

 T ]dg =  ! c j  T ]d jg.
Therefore the set "T ]d1g , ∙ ∙ ∙ , T ]dmg, generates the 

subspace GT ]DgH; hence the set

 "I ]b1g, ∙ ∙ ∙ , I ]b lg, T ]d1g, ∙ ∙ ∙ , T ]dmg,
forms a basis of C ]B, D; I, Tg over q.  

From now on we assume the following:

 q0 = q = 2 f , q l = 22 f or q0 = 2 f , q = q l = 22 f

and

             q l =  ]eg, 
e2 + ae + b = 0   ]a, b ! g, 
K = "~1 = b, ~2 = ae, ~3 = e2,.

Then neither a nor b are 0 and any element of q l can 

be written as aae + bb with a, b !  . Define a section 

T3 : ] q lg n −→ ] qg3 # n, of the linear map L : ] qg3 # n −→ 

] q lg n, by the sum 5 n t, where

 t : q l −→ ] qg3 # 1, aae + bb −→ f            p.

Then T3 is an -linear map and the composition of the 

summation map S : 3 
q
# n −→ q and T3 is 0:

(6)  S & T3 = 0.

Recall that the linear map L is the sum 5 nl where

 l :  f        p  −→ x1 b + x2 ae + x3 e
2.

If q l = 4 and 2 = "0, 1,, then 4 = 2]~g where ~ is 

a root of x2 + x + 1, and the linear map t : 4 −→ 3
2
 # 1 

m

j = 1

m

j = 1

m

j = 1

m

j = 1

a

b

a + b

a

b

a + b

x1

x2

x3

x1

x2

x3

is given by

(7)  1  f        p , ~ −→  f        p , ~− −→  f        p .

If q l = 16 and 4 = "0, 1, ~, ~2,, then 16 = 4 ]eg 
where e is a root of x2 + ~x + 1 = 0; hence a = ~, b = 

1.

We denote by C3]B, Dg the code C ]B, D; I, T3g of 

split type.

Theorem 14 If B is an [n, k] code over q and D is an [n, 

k l] code over q l , then C3]B, Dg is a [3n, k + 2k l] code 

over q.

Proof. By the equality dim  ]Dg = 2dim  ]Dg and 

Lemma 13 we obtain the theorem.  □

The above theorem contains the Turyn construction 

as a special case.

Example 10 Set q0 = q = p f , q l = p2 f and take a, b and e 

as above. Let B and D be [n, k] and [n, k l] codes over q, 

then the code C3]B, D 7 q lg is a code obtained by the 

Turyin construction.

Example 11 The following codes are discussed in Conway, 

Lomonaco and Sloane [3]. Let B be the [5, 2, 4] code over 

4 obtained by shortening the [6, 3, 4] hexacode H over 

4. A generator matrix for B is as follows: 

   ~    ~−    ~−    ~    0f
  0    ~    ~−    ~−    ~ 

p
 
.

Let D be the conjugate of B, then D1 := C3]B, D 7 16g is 

a [15, 6, 8] code over 4. Moreover, let B1 be the [15, 1, 

15] binary code generated by (1, ∙ ∙ ∙ , 1), then C3]B1, D1g 
is a [45, 13, 16] binary code.

Now we shall study the self-duality of the code 

C3]B, Dg with q l = 4, so we assume q l = 4 from now on.

Lemma 15   1. ]I ]bg, I ]blgg = ]b, blg   ]b, bl ! ] qg ng.
2. ]I ]bg, T3]dgg = 0, ]b ! ] qg n, d ! ] 4g ng.
3. In the space ] 2g3 # 1,

　　]t ]kg, t ]kgg = 0, ]t ]kg, t ]k lgg  = 1  

 ]k, k l]=g ! K = #
4g.

0

1

1

0

1

1

1

0

1

1

0

1

1

1

0

1

1

0
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4. If wt ]dg, wt ]d lg and wt ]d - d lg are even, then

　　]T3]dg, T3]d lgg = 0, ]d, d l ! ] 4g ng.
Proof. By definitions and (7), we get 1, 2 and 3. For d = 

]d1, ∙ ∙ ∙ , dng, d l = ]d l1, ∙ ∙ ∙ , d lng ! ] 4g n, define m1, m2, 

m3, m4 by the following:

1.  m1 is the number of i such that i is contained in 

supp ]dg \ ]supp ]dg ∩ supp ]d lgg,
2.  m2 is the number of i such that di = d li and that i 

is contained in supp ]dg ∩ supp ]d lg,
3.  m3 is the number of i such that di = d li and that i is 

contained in supp ]dg ∩ supp ]d lg,
4.  m4 is the number of i such that i is contained in 

supp ]d lg \ ]supp ]dg ∩ supp ]d lgg.
Then we have wt ]dg = m1 + m2 + m3, wt ]d lg = m2 + 

m3 +m4 and wt ]d - d lg = m1 + m2 +m4. By 3, we have 

]T3]dg, T3]d lgg = m2. By the assumption, wt ]dg  ≡ 

wt ]d lg  ≡ wt ]d - d lg ≡ 0 ]mod 2g; hence we have m1 
+ m2 + m3 ≡ m2 + m3 + m4 ≡ m1 + m2 + m4 ≡ 0 

]mod 2g. These equations imply m2 ≡ 0 ]mod 2). Thus 

]T3]dg, T3]d lgg= m2 ≡ 0 ]mod 2g. □

Lemma 16 Assume q = 2 or q = 4 and q l = 4. If B ]1 

] qg ng is self-orthogonal and D ]1 ] 4g ng is even, then 

C3]B, Dg ]1 ] qg3 # ng is self-orthogonal.

Proof. Let b, bl be two elements in B. Since B is 

self-orthogonal, it follows ]I ]bg, I ]blgg = ]b, b lg = 0. If 

d, d l ! D then, by Lemma 15, ]I ]bg, T3]dgg = 0 and 

]T3]dg, T3]d lgg = 0. Therefore C3]B, Dg is self-orthogonal.

 □

Lemma 17 Assume that q = 2 or q = 4 and q l = 4 and 

that n is even. If B ]1 n
q  g is self-dual and D ]1 n

4  g is an 

even [n, n/2] code, then C3]B, Dg is a self-dual [3n, 3n/2] 

code over q. In particular, C3]B, Dg is an even code.

Proof. Since B is self-dual, it follows dim  ]Bg = n/2. By 

Theorem 14, we see that C3]B, Dg is a [3n, 3n/2] code over 

q. By the previous lemma, C3]B, Dg is self-orthogonal; 

hence it is self-dual. □

Theorem 18 Assume n is even. If B is a binary doubly 

(resp. singly) even self-dual [n, n/2, d] code and D is an 

even [n, n/2, d l] code over 4, then C3]B, Dg is a binary 

doubly (resp. singly) even self-dual [3n, 3n/2,m]-code with 

m $ max"d, d l,.

Moreover, if

(8)  supp ]bg = supp ]dg
for b ! B and d ! D with wt ]bg = d and wt ]dg= d l, m > 

max"d, d l,.

Proof. By the above Lemmas, it suffices to show that 

C3]B, Dg is doubly or singly-even. Take any element x = ]x i jg in C3]B, Dg. Recall K = "~1 = 1, ~2 = ~, ~3 = ~−,. 

Define numbers mj (1 # j # n) by the following:

1.  m1 is the number of columns x j of x such that one of 

the three components of x j is equal to 1,

2.  m2 is the number of columns x j of x such that two 

of the three components of x j is equal to 1,

3.  m3 is the number of columns x j of x such that all of 

the three components of x j are equal to 1.

Then we have wt ]xg = 3m3 + 2m2 + m1, wt ]S ]xgg = m1 

+ m3 and wt ]L ]xgg = m1 + m2. Since L ]xg ! D and D is 

even, it follows wt]L]xgg = m1 + m2 ≡ 0 ]mod 2g; hence

         wt ]xg  = 3]m3 + m1g + 2]m2 + m1g - 4m1 

≡ 3]m3 + m1g   ]mod 4g.
On the other hand S ]xg ! B, and if B is doubly-even, 

then m3 + m1 ≡ 0 ]mod 4g; hence C3]B, Dg is 

doubly-even. If b ! B, then I ]bg ! C3]B, Dg; hence if B 

is singly-even, then so is C3]B, Dg. If x ! C3]B, Dg, then 

S ]xg ! B, L ]xg ! D; hence we obtain immediately the 
assertion for the minimal distance.  □

Example 12 (Binary singly-even self-dual [18, 9, 4] code) 

Let B be a binary singly-even self-dual code [6, 3, 2] and 

let D be the hexacode. Then C3]B, Dg is a binary 

singly-even self-dual code [18, 9, 4].

If B and B l are binary codes with

 B ∩ B l = G1 = (1, 1, ∙ ∙ ∙ , 1)H,

then B and D := B l 7 4 satisfy (8). Thus we have the 

following examples.

Example 13 (Binary Golay [24, 12, 8] code) Assume e8 

and e l8 are Hamming [8, 4, 4] codes such that dim]e8 ∩ 
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e l8g = 1. Put B := e8 and D := e l8 7 4. Then C3]B, Dg is 
the binary doubly-even self-dual [24, 12, 8] code: so it is 

the binary Golay code. (cf. Example 1)

Example 14 (Binary singly-even self-dual [36, 18, 8] 

code) Assume d12 and d l12 are binary singly-even self-dual 

[12, 6, 4] codes such that dim(d12 ∩ d l12) =  1. Put B := 

d12 and D := d l12 7 4. Then C3]B, Dg is a binary 

doubly-even self-dual [36, 18, 8] code.

Example 15 (Binary doubly-even self-dual [72, 36, w] ]w 

$ 12) code) Assume G and G l are binary Golay [24, 12, 8] 

codes such that dim]G ∩ G lg = 1. Put B := G and D := 

G l 7 4. Then C3]B, Dg is a binary doubly-even self-dual 

[72, 36, w] ]w $ 12g code.

It is very interesting to determine the minimal weight 

w of this code. Regrettably, we can not determine it.

Example 16 (Binary doubly-even self-dual [48, 24, 12] 

code) Let B be a binary [16, 8, 4] code generated by the 

following:

b1 = 1111000000000000, b2 = 0011110000000000,

b3 = 0000111100000000, b4 = 0101010100000000,

b5 = 0000000011110000, b6 = 0000000000111100,

b7 = 0000000000001111, b8 = 0000000001010101,

and let D an 4-linear [16, 8, 6] code generated by the 

following:

d1 = 3230000003030020, d2 = 3302020010000010,

d3 = 2301000013200000, d4 = 3300100000120200,

d5 = 2300032000030003, d6 = 3200010010000302,

d7 = 2200001001003003, d8 = 3100000300003130,

where 2 = ~, 3 = ~−. Then C3]B, Dg is a binary 

doubly-even self-dual [48, 24, 12] code.

It is known that there is only one binary doubly-even 

self-dual [48, 24, 12]-code, which is obtained as an 

extended quadratic residue code [3].

For convenience, we write the weight distribution and 

a set of generators of C3]B, Dg.
weight 0 12 16 20 24

# 1 17296 535095 3995376 7681680

28 32 36 48

3995376 535095 17296 1

 A set of generators for C3]B, Dg
coordinate ((1; 1); (~; 1); (~−; 1); (1; 2); (~; 2); (~−; 2); ∙ ∙ ∙ ; (~−; 16))
T3(d1) 110101110000000000000000000110000110000000101000
T3(~d1) 011110011000000000000000000011000011000000110000
T3(d2) 110110000101000101000000011000000000000000011000
T3(~d2) 011011000110000110000000101000000000000000101000
T3(d3) 101110000011000000000000011110101000000000000000
T3(~d3) 110011000101000000000000101011110000000000000000
T3(d4) 110110000000011000000000000000011101000101000000
T3(~d4) 011011000000101000000000000000101110000110000000
T3(d5) 101110000000000110101000000000000110000000000110
T3(~d5) 110011000000000011110000000000000011000000000011
T3(d6) 110101000000000011000000011000000000000110000101
T3(~d6) 011110000000000101000000101000000000000011000110
T3(d7) 101101000000000000011000000011000000110000000110
T3(~d7) 110110000000000000101000000101000000011000000011
T3(d8) 110011000000000000000110000000000000110011110000
T3(~d8) 011101000000000000000011000000000000011101011000
I (b1) 111111111111000000000000000000000000000000000000
I (b2) 000000111111111111000000000000000000000000000000
I (b3) 000000000000111111111111000000000000000000000000
I (b4) 000111000111000111000111000000000000000000000000
I (b5) 000000000000000000000000111111111111000000000000
I (b6) 000000000000000000000000000000111111111111000000
I (b7) 000000000000000000000000000000000000111111111111
I (b8) 000000000000000000000000000111000111000111000111

Finally, we shall study codes C3]B, Dg over 4.

Lemma 19 If B is an even codes over 4 and D is a 

self-dual code over 2, then C3]B, D 7 4g is an even code 

over 4.

Proof. Each element x ! C3]B, Dg can be written in the 

form:

x = I ]bg +  !a i  T3]d ig
  ]b ! B, d i ! D 7 4, a i ! 4g.

Put y := ! t
i = 1  a i  T3]d ig. Since

 S ]yg =  !a i  S & T3]d ig = 0,

it follows that each column of y has one of the following:

t ]0, 0, 0g, t ]k, 0, kg v, t ]1, ~, ~−g v   
  ]k ! K = #

4 , v ! S3g.
Here t ]a1, a2, a3)

v = t ]av(1), av(2), av(3)g. We denote by 

y j the j-th column vector of y and define the numbers m l ]1 # l # 5g by the following:

1. m1 = ♯ " j ! supp ]bg | y j = t ]1, ~, ~−g x ,
2. m2 = ♯ " j ! supp ]bg | y j = t ]1, ~, ~−g x ,

t

i = 1

t

i = 1

t

i = 1

t

i = 1
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3. m3 = ♯ " j ! supp ]bg | y j = t ]x i, 0, x ig v ,
4. m4 = ♯ " j ! supp ]bg | y j = t ]k, 0, kg v, k = bi ,
5. m5 = ♯ " j ! supp ]bg | y j = t ]k, 0, kg v ,.

By Lemma 15 4,

 ]y, yg =  !a i a− j ]T3]d ig, T3]d jgg = 0.

On the other hand, since ]y, yg ≡ wt ]yg ]mod 2g, it 

follows

          wt ]yg  = 3]m1 + m2g + 2]m3 + m4 + m5g 
≡ 3]m1 + m2g ≡ 0   ]mod 2g;

hence m1 + m2 ≡ 0  (mod 2g. Then we have

wt ]xg  = 3wt ]I ]bgg - m1 - 2m3 + 3m2 + 2m5

 ≡ wt ]bg   ]mod 2g.
Since B is even, it follows wt ]bg ≡ 0 (mod 2g; hence 

wt ]xg ≡ 0 ]mod 2g. Thus C3]B, Dg is an even code.  □
It seems for us that the following holds: If B is an 

4-linear even [n, n/2, d l] code. and D is an 4-linear 

self-dual [n, n/2, d] code, then C3]B, Dg is an 4-linear 

self-dual [3n, 3n/2, m] code, where m $ max"d, d l,.

Example 17 ([6, 3, 4] Hexacode) Let B be an 4-linear 

code [2, 1, 2] generated by b1 = 1~ and let D an 4-linear 

code [2, 1, 2] generated by d1 = 11. Then C3]B, Dg is the 

[6, 3, 4] Hexacode.

Example 18 ( 4-linear self-dual [24, 12, 8] code) Let B be 

an 4-linear [8, 4, 4] code generated by the following:

b1 = 02010130 , b2 = 02001031, 

b3 = 00100131, b4 = 12111131,

where 2 = ~ and 3 = ~− and let D an 4-linear [8, 4, 4] 

code generated by

d1 = 11110000 , d2 = 00111100, 

d3 = 00001111, d4 = 01010101.

Then C3]B, Dg is an 4-linear self-dual [24, 12, 8] code.

weight 0 8 10 12 14 16

# 1 738 12312 177156 1106280 3788217

18 20 22 24

6206760 4419828 1032408 33516

t

i, j = 1

t

i, j = 1

6.    Automorphisms of codes of split type

A code C ]B, Dg of split type has automorphisms 

induced by those of B and D. In [6], Griess discusses 

such automorphisms of the Golay codes. In this section, 

we shall give a generalization of Griess’ argument to 

codes of split type , however, our notation is somewhat 

different from Griess’. So we begin with recalling basic 

facts about automorphisms of codes.

For a field F, we denote by Mon ]n, Fg the group of 

monomial matrices with coefficients in F #. Let Sn be the 

symmetric group of degree n. Then Sn acts on the group 

]F #g n via

 ]a1, ∙ ∙ ∙ , ang = ]a1 v - 1 , ∙ ∙ ∙ , an v - 1 g.
By this action, we get the semi-direct product Sn G ]F #g n. 

Then the following is an isomorphism :

 z : Sn G ]F #g n −→ Mon ]n, Fg,   ]v, ag −→ A,

where

        a = ]a1, ∙ ∙ ∙ , ang,   Aij = )           
For an element A ! Mon ]n, Fg, we set

 z-1 ]Ag = ]v ]Ag, a ]Agg.
The monomial group Mon ]n, Fg acts on the vector 

space W = ! n
i = 1  Fw i with basis "w1, ∙ ∙ ∙ , wn, via

 w i
(v, a) = ai v w i v .

The group Aut ]Fg acts on the group Mon ]n, Fg via

]v ]Ag, a ]Agg i = ]v ]Ag, a ]Ag ig,   A ! Mon ]n, Fg.
Set Mon* ]n, Fg = Aut ]Fg G Mon ]n, Fg, then it acts on 

the space W via

 ] ! vi  w ig(v, A) =  ! v i
i ]w ig A = ! ]vi v - 1g iai w i.

Now, we go back to the situation (2) in ?2. For a 

subset K = "~ i | 1 # i # k, of q l with !~ i = 0, let

 Ω = "]c, ig | c ! K, 1 # j # n,.

We consider the set Ω as the standard basis of the space 

q
k # n :

ai v     if j = i v

  0    otherwise

ai v     if j = i v

  0    otherwise

i = 1i = 1

n

i = 1

n

i = 1

n

i = 1

n

i = 1
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 V := q
k # n =   !   q]c, ig.

If the set K is Gal ] q l / qg-invariant, the extended 

monomial group Mon*]n, q lg acts on Ω via

 ]c, ig(i, A) = ]c iai v(A) , i v(A)g,
where

]i, Ag ! Mon*]n, q lg = Gal ] q l / qg G Mon ]n, q lg.
Hence we have an injection:

(9)  Mon*]n, q lg −→ Mon ]kn, qg.
Lemma 20 The linear map L : V −→ n

q l is Mon*]n, q lg-
equivariant; i.e.,

 L ]x mg = L ]xg m   ]x ! V, m ! Mon*]n, q lgg.
Proof. Set m = ]i, Ag, then m−1 = ]i−1, ]A i−1g−1g. Set

 x =   !   x ( c , i ) ]c, ig,
then we have

L ]x mg  = L ]   !   x ( c , i ) ]c, ig(m,0)g

 = L ] !  x ( c , i ) ]c iai v (m) , i v(m)gg
 = ]∙ ∙ ∙ ,  !  c iai v (m) x ( c , i ), ∙ ∙ ∙ g.

On the other hand, we have

L ]xg m  = (∙ ∙ ∙ ,  !  cx ( c , i ), ∙ ∙ ∙ g m

 = (∙ ∙ ∙ , ! c ix ( c , i )  ai v (m), ∙ ∙ ∙ g.
Thus we have the equation L ]x mg = L ]x mg. 

If K = q l , then n
q l  acts on Ω via

　　]c, ig d = ]c + di, ig, ]d = ]d1, ∙ ∙ ∙ , dngg.
Hence the semi-direct product N := Mon*]n, q lg G ] q lg n 

acts on Ω . Thus we have an injective homomorphism

(10)  N ]= Mon*]n, q lg G ] q lg n) −→ Mon ]kn, qg.
Lemma 21 Assume K = q l. Then the linear map L 

(c, i) !Ω(c, i) !Ω

(c, i) !Ω(c, i) !Ω

(c, i) !Ω(c, i) !Ω

c ! Kc ! K

c ! Kc ! K

satisfies the following:

 L ]x dg = L ]xg+ ]∙ ∙ ∙ , ]I ]e ig, xgdi, ∙ ∙ ∙ g.
Proof. Let

x =   !   x ( c , i ) ]c, ig ! V, d = ]d1, ∙ ∙ ∙ , dng ! ] q lg n,

then we have

L ]x dg  = L ] ! x ( c , i ) ]c, ig d

 = L ] ! x ( c , i ) ]c + di, igg
 = L ] ! x ( c- di , i ) ]c, ig
 = ]∙ ∙ ∙ , ! cx ( c- di , i ), ∙ ∙ ∙ g
 = ]∙ ∙ ∙ , ! ]c + digx ( c , i ), ∙ ∙ ∙ g
 = L ]xg + ]∙ ∙ ∙ , ]I ]e ig, xgdi, ∙ ∙ ∙ g.
 □

Let ]B, D; I, L, T2g be a set of data as in the Case II 

and C2]Dg the code of split type,i.e., C2]Dg is the linear 

subspace generated by

 " I ]e1 - e jg | 1 # i < j # n, ∪ "C2]dg | d ! D,.

Recall that T2 : 
n
q l −→ V is the section of L defined by

 T2]zg = T ]zg + I ]e1g =  ! ]zi, ig + I ]e1g.
The group of extended automorphisms for D is

 Aut*]Dg = "m ! Mon*]n, q lg | D m = D,.

Then the restriction of the injective homomorphism (10) 

gives an isomorphism (cf. [6] ]5.25g,]7.19gg:
Proposition 22

Aut*]Dg G D - Mon*]n, q lg G ] q lg n ∩ Aut]C2]Dgg.
Proof. If m ! Aut*]Dg, then

 ]I ]e ig - I ]e jgg m = I ]e i v (m)g - I ]e j v (m)g,
 ]I ]e1g + T ]dgg m = I ]e1 v (m)g + T ]d mg.

If v ! D, then

 ]I ]e i - e jgg v = I ]e i - e jg,

(c, i) !Ω(c, i) !Ω

n

i = 1

n

i = 1
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 ]I ]e1g + T ]dgg v = I ]e1g + T ]d + vg.
Thus, if ]m, vg ! Aut*]Dg G D, then ]m, vg ! Aut]C2]Dgg.

Conversely, if ]m, vg ! Aut]C2]Dgg, then x (m,v) ! 

C2]Dg for each x ! C2]Dg. Set x = I ]e1g + T ]0g = T2]0g. 
Then we have L ]xg = 0, x (m)

= I ]e1 v (m)g + T ]0g and 

]I ]e1 v (m)gg + T ]0g, I ]e igg = ]T ]0g, I ]e igg = 1. Therefore

L ]x (m,v)g  = L ]x (m, 0(1,v)g
 = L ]x mg + ]∙ ∙ ∙ , ]I ]e ig, x mgvi, ∙ ∙ ∙ g
 = L ]xg m + v = v.

Since the left hand side of this is contained in D, it 

follows v ! D and ]m, 0g =]m, vg(1,-vg ! Aut ]C2]Dgg.
Now we set x = I ]e1g + T ]dg. Then L ]x mg = 

L ]I ]e1g + T ]dgg m = d m ! D. Since d ! D is arbitrary, 
m must be in Aut*]Dg.  □

Now let ]B, D; I, L, T 3g be a set of data as in the Case 

III with ]q, q l) = (q, 4g. We shall define the subgroup 

Aut ]Bg ∩ Aut*]Dg of Mon*]n, 4g by

Aut ]Bg ∩  Aut*]Dg 
= "m ! Mon*]n, 4g | B v]mg = B, D m = D,.

By the injection (9), it becomes a subgroup of Mon ]3n, 

4g.
Proposition 23

Aut]Bg ∩ Aut*]Dg - Mon*]n, 4g ∩ Aut]C3]B, Dgg.
Proof. If Aut]Bg ∩ Aut*]Dg, then

 I ]bg m = I ]b v]mgg,
 T3]dg m = T3]d mg,

where b ! B and d ! D. Since v]mg in Aut]Bg and m in 

Aut*]Dg, m is contained in Aut ]C3]B, Dgg.
Conversely, if m ! Aut ]C3]B, Dgg, then x m ! C3]B, 

Dg for each x ! C3]B, Dg. For any element d in D, x := 

T3]dg ! C3]B, Dg and L ]x mg = L ]T3]dgg m = d m ! D; 
hence m ! Aut*]Dg. Now we set x = I ]bg, where b ! B. 

Then S]x mg = S]xgv]mg = bv]mg ! B; hence v]mg ! Aut]Bg. 
Therefore m is contained in Aut]Bg ∩ Aut*]Dg. □

Remark If B = e8 and D = e l8 7 4, where e8, e l8 are 

Hamming [8, 4, 4]-code with dim 2 ]e8 ∩ e l8g = 1, then 

Aut]Bg ∩ Aut*]Dg - S3 # L2]7g (cf. Curtis [2], [3]).

Finally we introduce an M-matrix of a code of split 

type. Let ]B, D; I, L, Sg be a data as in the situation (2) 

and C the code of split type associated with it. For each 

element ]c, ig ! Ω = "]c, ig | c ! K, 1 # i # n,, take a 

non-zero vector e ( c , i ) in the coordinate line q]c, ig. 
Consider a k # n-matrix

 M = ] f ( c , i )g
obtained by rearranging the set "e ( c , i ),. The matrix M is 

called an M-matrix of the code C if the linear 

automorphism f of V = ! ( c , i )!Ω q l - ] q lg k # n defined 

by ]c, ig −→ f ( c , i ) induces an automorphism of the code 

C. If once we can find methods of making M-matrices, 

we get many automorphisms of the code C.

Since C is a code of split type, there exist subsets B l 

and D l of B and D, respectively, such that

 "I ]b lg, S ]d lg | bl ! B l, d l ! D l,
forms a basis of the code C. Therefore M is an M-matrix 

if the following are contained in C:

 " f ]I ]b lgg, f ]S ]d lg) | bl ! B l, d l ! D l,.

In particular, by Theorem 9, it is easy to check this in 

the Case II. Thus, for Golay codes, we have nice methods 

of making M-matrices (cf. Th. 2.5.1 in [12] and Th.4 in 

[9]). For further discussion and application of M-matrices, 

we refer to [12], [9], [11], [13], [8] and [10].
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Transport Sector Marginal Abatement Cost Curves in Computable General

Equilibrium Model

Atit TIPPICHAI 1, Atsushi FUKUDA2 * and Hisayoshi MORISUGI 3

Abstract

    In the last decade, computable general equilibrium (CGE) models have emerged a standard tool for climate 
policy evaluation due to their abilities to prospectively elucidate the character and magnitude of the economic 
impacts of energy and environmental policies. Furthermore, marginal abatement cost (MAC) curves which 
represent GHG emissions reduction potentials and costs can be derived from these top-down economic models. 
However, most studies have never address MAC curves for a specific sector that have a large coverage of 
countries which are needed for allocation of optimal emission reductions. This paper aims to explicitly describe 
the meaning and character of MAC curves for transport sector in a CGE context through using the AIM/CGE 
Model developed by Toshihiko Masui. It found that the MAC curves derived in this study are the inverse of the 
general equilibrium reduction function for CO2 emissions. Moreover, the transport sector MAC curves for six 
regions including USA, EU-15, Japan, China, India, and Brazil, derived from this study are compared to the 
reduction potentials under 100 USD/tCO2 in 2020 from a bottom-up study. The results showed that the ranking 
of the regional reduction potentials in transport sector from this study are almost same with the bottom-up study 
except the ranks of the EU-15 and China. In addition, the range of the reduction potentials from this study is 
wider and only the USA has higher potentials than those derived from the bottom-up study.

　Key Words :  Marginal abatement cost curve, Computable general equilibrium model, Top-down approach,
                          Sectoral CO2 emission, Transport sector

1.    Introduction

Recently, the marginal abatement cost (MAC) 

curves have become an efficient instrument to analyze 

potentials of GHG mitigation and impacts of the 

implementation of the Kyoto Protocol and its emission 

trading1),2). Also, the MAC curves can derive optimal 

emission reductions for each country which minimizes 

total abatement cost for a given target3). However, to 

deal with regionally sector-specific emission reductions, 

there is no study that provides sectoral MAC curves 

which have a large coverage of countries and regions 

yet. For example, Ellerman and Decaux3) apply the 

EPPA Model to generate country-based MAC curves 

for 12 regions while Sue Wing4) develop a multi-sector 

computable general equilibrium (CGE) model which 

could generate sectoral MAC curves but only for the 

United States. As transportation is sharing almost 25% 

of global CO2 emissions, it is necessary to treat this 

sector particularly and analyze its mitigation potentials 

by sector-based approach. Hence, this paper generates 

MAC curves for transport sector by region and describes 

the implication of the sectoral MAC curves in a CGE 

context through applying the AIM/CGE Model. The 

algebraic structure and equilibrium of the model are 

explicitly explained in order to capture the characteristic 

of the sectoral CO2 emissions from the transport sector 

and relevant variables which influence to the MAC 

curves.

2.    Marginal Abatement Cost Curves

There are three ways to represent the abatement 

costs, i.e., investment cost to implement technological 

options in order to abate emissions; reductions in GDP 

due to reduction in production to avoid emissions; and 

willingness to pay (WTP) to emit more emissions which 

1 Transportation Engineering and Socio-Technology, Graduate School of Science and Technology (Doctor’s Course), Nihon University
2 Department of Transportation Engineering and Socio-Technology, College of Science and Technology, Nihon University 
3 University Research Center, Nihon University
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Received 30 June 2009, Accepted 3 December 2009

J. Res. Inst. Sci. Tech., Nihon Univ. No. 119 pp. 15-28
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is identical to tax level. WTP is most commonly 

approximated by the consumer and producer surplus 

whose consumption and production is affected by the 

mitigation action5). The total abatement cost (TAT) can 

be measured simply in a framework of partial 

equilibrium analysis as the net economic loss due to the 

introduction of CO2 emission taxation which is so-called 

deadweight loss (DWL) as shown in Fig. 1. In a general 

equilibrium model, marginal abatement cost (MAC) is a 

tax level similarly to the partial equilibrium analysis and 

the DWL is defined as the reduction in indirect utility 

divided by marginal utility of income. 

In Fig. 1, once a CO2 tax is levied, consumer surplus 

will be reduced as the reduction in consumption which 

results the reduction of CO2 emissions. Based on this 

concept, different tax levels will give different reductions 

in emissions. The coordinates between the CO2 tax levels 

and corresponding CO2 emission reductions can be 

obtained by varying the levels and then a MAC curve 

can be plotted as shown in Fig. 2. As this MAC curve 

derived from the economic impact, the area under the 

MAC represents the total abatement cost which equals 

to the DWL.

Fig. 1.  Economic impact due to CO2 tax

Fig. 2.  The marginal abatement cost curve

There are two approaches to generate MAC curves; 

“bottom-up” engineering/technology-based models and 

“top-down” economic models1),6),7). The first approach 

simulates the interactions among the technologies that 

form the economy’s energy system. The bottom-up 

models contain detailed empirical information on the 

technical characteristics of specific abatement options. It 

means that the bottom-up approach represents the 

direct cost of the available abatement technologies. On 

the other hand, the top-down models are based on 

aggregated microeconomic models. The models are most 

often computable general equilibrium (CGE) models 

which contain the information of abatement 

technologies only implicitly. The top-down models treat 

abatement costs purely as the profit or utility foregone 

as a result of forced changes in behavior induced by 

environmental policy8). As the estimation of MAC is 

essential to assess the potential of climate change 

mitigation, the cost estimation studies for countries 

through both top-down and bottom-up approaches have 

been discussed extensively in the Assessment Reports of 

IPCC Working Group III since the Second Assessment 

Report (SAR). The costs estimated by the bottom-up 

studies that rely on more detailed and comprehensive 

assessments of technological options tended to arrive at 

larger efficiency potentials and lower costs of saved 

energy than the less detailed studies. The comparison of 

top-down model and bottom-up modeling methodologies 

has been discussed in the IPCC Third Assessment 

Report (TAR). However, the comparison of GHG 

mitigation potentials by country had been done only 

within the same approach. Latter, the comparison of 

sectoral potentials for the global GHG mitigation 

estimated by bottom-up and top-down approaches had 

been made in the IPCC Forth Assessment Report 

(AR4). Surprisingly, several sectors by the top-down 

models, for example, energy supply, buildings, and 

industry sectors indicate a higher emission reduction 

than the bottom-up approaches. One of the reasons is 

noted that top-down models allow for product 

substitution, which is often excluded in bottom-up 

sector analysis. Also, it found that the differences 

between bottom-up and top-down are larger at the 

sector level. The existing studies however have not been 

compared the potentials of the transport sector by 
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country between the bottom-up and top-down models 

which is one of objectives of this study.

Based on the literature review, it is practical difficulty 

to develop the MAC curves for transport sector which 

have a large coverage of countries and options to 

meeting the objective of this study. Also, we aim at 

assessment of reduction potentials and abatement costs 

of CO2 emissions across sector in general⎯not specific 

abatement technologies. Therefore, in this study we 

employ a multi-region multi-sector CGE model which 

could tackle GHG emissions from a specific sector 

covering major emitting countries and regions. In a 

CGE model, marginal abatement cost curves can be 

derived when the costs associated with different levels of 

reductions or the reduction targets associated with 

different abatement costs are generated which will be 

further explained in next sections.

3.    Modeling Sectoral CO2 Emissions in a CGE Context

In a CGE model, CO2 emissions are primarily 

associated with the use of fossil fuels (i.e. coal, oil and 

gas) as intermediate inputs to production sectors and as 

final consumption demand to household as shown in 

Fig. 3. The main actors in the diagram are households, 

who own primary factors of production (e.g. capital, 

labor and natural resources) and the final consumers of 

produced commodities, and firms, who rent the factors 

of production from the households for the purpose of 

producing single goods and services that the household 

then consume. The critical data that determine the 

structure of a CGE model are contained in social 

accounting matrix (SAM), which represents a snapshot 

of the economy of each region9).

Each production sector produces single commodity 

or service by inputting intermediate goods and primary 

factors. To address energy and climate policies, 

intermediate inputs for production and produced goods 

for final consumption are divided into non-energy and 

energy goods. Some production sectors of non-energy 

goods/services use a relatively large proportion of energy 

goods (i.e. fossil fuels and electricity) as inputs, such as 

energy intensive productions, metal and machinery, and 

transport. Energy goods include fossil fuels which are 

carbon content goods, and electricity. Then, each fossil 

fuel (i.e. coal, oil and gas) is modeled as a composite 

with carbon emissions by a Leontief form, i.e. the 

elasticity of substitution equals zero. These fossil fuels 

composites are crucially important that we can deal with 

CO2 emission tax by introducing price of CO2 emission 

permits. Similar to production sectors, we can track 

fossil fuels consumption and its CO2 emissions in final 

consumption sector as shown in the diagram. 

Fig. 3.  A multi-sector CGE framework with CO2 emission

4.    The AIM/CGE Model

　4.1   Overview
In this study, we employed a global CGE model 

namely the AIM/CGE Model developed by Masui10). 

The AIM stands for Asia-Pacific Integrated Model 

which is a large-scale computer simulation model of the 

National Institute for Environmental Studies (NIES), 

aiming to assess the climate change problem11),12). The 

AIM/CGE Global Model is written by the GAMS/

MPSGE modeling system13), based on GTAPinGAMS 

and GTAP-EG datasets14). The global economic data used 

in the model is based on GTAP version 6 which has base 

year of the data in 2001 and disaggregates the global 

economy into 87 regions and 57 sectors. Nevertheless, the 

AIM/CGE model was added many items, for example, 

more GHGs, biomass, and power generation technologies. 

The model aggregates the GTAP dataset into 24 regions, 

22 production sectors and a final consumption sector15), as 

presented in Table 1. The AIM/CGE model has dynamic 

structure which can simulate the global economy in the 

base year, 2001 and from 2010 to 2110 with a 10-year 

span. The target year of this study is 2020. The study 

aims to develop MAC curves for the transport sector in 

2020 and then utilize the derived MAC curves to analyze 

CO2 emission reduction potential in the transport sector 

by region for the post-Kyoto Protocol which will be 

discussed in the section 6.
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Table 1  Regions and sectors in the AIM/CGE Global Model

Countries and Regions Production Sectors
Developed Countries

Japan (JPN)
Australia (AUS)
New Zealand (NZL)
Canada (CAN)
United States of America (USA)
Russia (RUS)
Western Europe (EU15)
Eastern Europe (EU10)
Rest of Europe (XRE)

Developing Countries
Korea (KOR)
China (CHN)
Indonesia (IDN)
India (IND)
Thailand (THA)
Other South-east Asia (XSE)
Other South Asia (XSA)
Rest of Asia-Pacific (XRA)
Mexico (MEX)
Argentine (ARG)
Brazil (BRA)
Other Latin America (XLM)
Middle East (XME)
South Africa (ZAF)
Other Africa (XAF)

Non-Energy
Food (FOD)
Energy intensive products (EIS)
Metal and machinery (M_M)
Other manufactures (OMF)
Water (WTR)
Construction (CNS)
Transport (TRT)
Communication (CMN)
Public service (OSG)
Other service (SER)
Investment (CGD)
Agriculture (AGR)
Livestock (LVR)
Forestry (FRS)
Fishing (FSH)
Mining, except fossil fuels (OMN)

Energy
Coal (COA)
Crude oil (OIL)
Petroleum products (P_C)
Gas (GAS)
Gas manufacture distribution (GDT)
Electricity (ELY)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

1.
2.
3.
4.
5.
6.

Households
Final consumption

　4.2   The structure of the model
All production and final consumption sectors are 

modeled using nested Constant Elasticity of Substitution 

(CES) production functions, or Cobb-Douglas (C-D) 

and Leontief (LT) forms, which are special case of the 

CES, as shown in Figs. 4 and 5. Typical productions of 

non-energy sectors (including the transport sector) have 

the structure as shown in Fig. 4. At the top of the 

production tree, each sector i in a region r produces a 

composite commodity that can be sold domestically or 

exported to other regions16). The relationship between 

domestic and export goods can be represented by a 

Constant Elasticity of Transformation (CET) function 

as

 (1)

where,  is sector i’s total output,  is the output 

efficiency parameter,  is the share parameter,  

represents sector i’s supply for domestic,  is the 

sector’s output supply for export, and  is the CET for 

sector i. Each firm allocates it’s output between domestic 

and export markets to maximize revenue, subject to the 

CET function, yielding export goods output per unit of 

domestic goods output as a function of relative prices,

 (2)

where,  and  are, respectively, prices of domestic 

and exported commodities from sector i.

Fig. 4.  Production structure (non-energy sectors)

Fig. 5.  Final consumption

The composite output above is produced with 

fixed-coefficient (Leontief) inputs of each non-energy 

intermediate goods and an energy-primary factor 

composite. The energy-primary factor composite is a 

CES function. Primary factor (i.e. value-added) inputs of 

capital, labor, land and natural resources are aggregated 

through a CES production function. The energy 
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composite is a CES function of electricity and fossil 

fuels. At each node of the production tree, industries 

will decide on volume of each input in order to minimize 

production cost. The producer behavior is be formulated 

as shown in Appendix A. Fossil fuel production has a 

different structure⎯its output is produced as an 

aggregate of a resource input and a non-resource input 

composite. Final demand has the structure shown in 

Fig. 3. Utility in each region is a Leontief aggregate of 

energy and non-energy goods. The household behavior 

is formulated as shown in Appendix B. Main parameters 

influence to demand and substitutability both production 

and consumption functions given in Appendixes A and 

B are share parameters (or input coefficients in case of 

Leontief form) and elasticity of substitution, respectively. 

The share parameter for each input both single and 

composite input can be calibrated by using the 

benchmark data from the GTAP database. For example, 

input coefficient for each non-energy goods (ane,j) and 

input coefficient for value-added and energy goods 

composite (aave,j) are involved to determine the output 

volume of production sector. The elasticity of substation 

is also derived from the GTAP database. The elasticity of 

substitution, for example, at the 2nd level of aggregation 

of value-added composite and fossil fuel-electricity 

composite (σvae) is involved in aggregation along with 

share parameters of value-added composite and fossil 

fuel-electricity composite to determine the input volume 

of value-added and energy goods composite for the top 

level of production.

Intermediate inputs for productions and final demand 

for consumption are generated through the Armington 

aggregation17) which mixes domestic and imported goods 

as imperfect substitutes, specified as a CES function as 

shown in Fig. 6. The CES function representing the 

relationship between the two categories of intermediate 

inputs can be expressed as

 (3)

where,  is composite intermediate goods from sector 

i to sector j,  is the intermediate input efficiency 

parameter,     is the share parameter,     represents 

domestic intermediate goods,  represents imported 

intermediate goods, and  is the CES for sector i.

Fig. 6.  International trade

Each firm decides on inputting volume between the 

two sources of intermediate inputs to minimize cost, 

subject to the CES function, yielding import demand per 

unit of domestic demand as a function of relative prices,

 (4)

where,  and  are, respectively, prices of domestic 

and exported commodities from sector i.

The AIM/CGE Model represents the government 

passively that collect taxes and disburses the revenues to 

households as lump-sum transfers. Saving and investment 

by sector in a region is modeled endogenously through 

the sector 11 that collect produced goods from other 

sectors to investment.

　4.3    The equilibrium conditions with CO2 emission 
constraint

At equilibrium, the model will solve for the set of 

commodity and factor prices, and the levels of industry 

activity and household income that clear all markets in 

the economy, given aggregate factor endowments, 

households’ consumption technologies and industries’ 

transformation technologies. Profit maximization in the 

constant-returns-to-scale case implies that no activity earns 

a positive profit. On the consumer’s side, in equilibrium 

income restricts expenditure, i.e. there is no excess demand 

of the household, including government. Such equilibrium 

can be represented by the three conditions; (1) zero profit 

(2) market clearance and (3) income balance conditions 

as shown in Appendix C. As the main parameters; share 

parameters and elasticity of substitution, reflect demand 

and substitutability, all equilibrium conditions involve 

these parameters as well. For example, the zero profit 
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conditions, price of output (pyj,r) and expenditure index 

(θr) are function of all input prices at the domestic 

market which involves both share parameters and 

elasticity of substitution. 

5.    Implication of Sectoral MAC Curve in the 

AIM/CGE Model　　　　　　　　

As mentioned that CO2 emissions emitted from 

sectors in a CGE model can be determined through 

intermediate inputs of fossil fuels into that sector with 

emission factor of each fossil fuel. In the benchmark 

data (i.e. base case), the CO2 emissions tax is equal to 

zero, consequently production sectors and household 

will input and consume fossil fuel regardless amount of 

CO2 emitted. Once we introduce CO2 emission tax (or 

price of emission permit), the price of consuming fossil 

fuel will increase. CO2 emissions by sector j ( ) and 

final consumption ( ) in region r then can be 

calculated by eq. (5) and (6), respectively.

 (5)

 (6)

where, xi,j and xi,c = inputting and consuming volume of 

fossil fuel (sectors 17 to 21 are, respectively, coal, crude 

oil, petroleum products, gas, and gas manufacture 

distribution) into sector j and final consumption, 

respectively, which can be determined as shown in 

Appendixes A and B.

This paper specially focuses on MAC curves for 

transport sector which shares around 25% of global CO2 

emissions, mainly from fossil fuel combustion. At the 

equilibrium, CO2 emissions from the transport sector 

(sector no. 7) for region r can be determined by eq. (7). 

All composite prices in eq. (7) can be further determined 

by eq. (8) to (13). All variables and parameters of the 

equations are defined in Appendix A.

 
(7)

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)
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From the equations above, we can see that the 

emission of the sector is a function of emission factors 

( ), CO2 emission tax ( ), production factors, all 

prices related to fossil fuel, and the sector’s output ( ). 

Also, it can be said that the emission of a sector is 

proportional to its output which can be obtained at 

market equilibrium that depends on all prices and CO2 

tax. 

Fig. 5 shows conceptually the relationship between 

the general equilibrium demand function (thick curve) 

and demand functions (thinner curve) for CO2 emissions. 

The demand function is the emission level at a certain 

level of CO2 tax given the price of other goods and 

inputs at a certain value. It will shift corresponding to 

the change in given price level of other goods as shown 

by the dash curves in Fig. 7. On the other hand the 

general equilibrium demand function expresses the 

emission level at a certain level of CO2 tax given the 

price of other goods and inputs at the equilibrium level 

corresponding to the given CO2 tax level. At a certain 

level of CO2 tax ( ), therefore, we can determine the 

crossing point between two curves where all price levels 

are at the equilibrium level corresponding to the given 

CO2 tax level.  The locus of crossing points is the general 

equilibrium demand function. 

The general equilibrium emission reduction function 

is defined as the difference in the emission quantity of 

the given level of CO2 tax from the emission level of no 

CO2 tax case. The marginal abatement cost (MAC) 

curves is defined as the inverse of general equilibrium 

emission reduction function with respect to the tax level 

of CO2 which is shown as the CO2 tax level for a given 

level of reduction of the general equilibrium emission 

reduction function. The total abatement cost is equal to 

the area under the MAC curve, which is identical to the 

deadweight loss (DWL) for a given CO2 tax as 

mentioned in Section 1 and shown in Fig. 2.

6.    Comparing the Transport MAC Curves to the 

Bottom-Up Approach　　　　　　 　　

In practical, to generate sectoral MAC curves, we 

imposed CO2 taxes into the model and varied from 0 up 

to 200 USD/tCO2 and obtained corresponding CO2 

emissions by sector by region. With having the 

coordinates of CO2 emission taxes and associated 

emission reductions, we can plot sectoral MAC curves 

by region. Fig. 8 shows the derived MAC curves for 

transport sector by region in 2020. It can be interpreted 

straight forward that USA has high potential of CO2 

emission reductions in transport sector, i.e. abatement 

cost of CO2 emissions is cheapest and much cheaper 

than other countries (see Fig. 8 (a)). For developing 

countries, abatement cost of CO2 emissions in transport 

sector are also cheap; particularly, China, India, Brazil 

and a group of Middle-East countries (see Fig. 8 (b)). A 

major reason of why the effects of the CO2 emission 

taxes are particularly strong in the USA but are very 

weak in the other developed countries is that the fossil 

fuel prices and taxes in the USA are very lower than 

other countries. From key world energy statistics 

published by the International Energy Agency18), 

gasoline price in the USA is cheaper than other 

countries, e.g. gasoline price in Japan is more than two 

times of the USA price. Thus, when we introduce a CO2 

emission tax into the model, reductions in fossil fuel use 

in the USA are very sensitive. As the technology (i.e. 

represented by production function) of the transport 

sector, specifically the substitution rate between capital 

and energy for the USA and Japan are similar, then the 

price level of fossil fuels could be the reason for the 

difference of the sensitivity to the CO2 emission taxes 

between the USA and Japan. For Japan, fossil fuel taxes 

are relatively high. With the same level of the CO2 

emission tax with the USA, reductions in fossil fuel use 

in Japan are very small. Also, energy efficiencies in 

Japan, particularly in the transport sector, are 

Fig. 7.   The general equilibrium demand function and 

demand functions for CO2 emissions
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considerably high. It will be very expensive to reduce 

more a unit of CO2 emissions in the transport sector for 

Japan. This is similar for other developed countries like 

the EU-15, Australia and New Zealand.

The MAC curves derived from this study are then 

compared to the GHG mitigation potentials based on 

the bottom-up approach by the NIES19). The CO2 

reduction potentials in transport sector under 100 USD/

tCO2 for six regions from the bottom-up study are 

roughly read from the graphic. This comparison aims to 

assess consistency of the MAC curves derived from the 

different approaches only. Table 2 shows the result of 

the comparison between the bottom-up model and this 

study. The result showed that the ordering of the 

regional reduction potentials from both studies is almost 

same (e.g., the USA is the cheapest countries while 

Japan is most expensive), expect for the ranks of the 

EU-15 and China. The range of the reduction potentials 

from this study is wider (i.e., 15.8 – 399.4 MtCO2), and 

only the reduction potential of USA from is higher than 

the bottom-up study. Also, the reduction potentials of 

the EU-15 and Japan from this study are completely 

lower than the bottom-up study (about 70% below). The 

reduction potentials of developing countries including 

China, Brazil and India from this study are quite same 

as the bottom-up model’s results (about 20% below). In 

addition, based on the results from this study, we found 

that the abatement costs of the top-down study is not 

necessary larger than the bottom-up study as noted by 

previous studies6),7).

To clarify relative price effect and demand effect, a 

relationship between fuel price with CO2 tax and fuel 

demand by the transport sector for the countries which 

have big difference; USA, EU-15 and Japan, is shown in 

Fig. 9. It shows that the influence of fuel price with CO2 

tax to the transportation fuel demand is very strong in 

case of USA and relatively weak in case of EU-15 and 

Japan. Therefore, the price elasticity could be one of the 

reasons why the reduction potential of USA is totally 

opposite to those of EU-15 and Japan when compared 

to the reduction potential by the bottom-up approach.

From the comparison analysis in this study, there are 

main reasons behind the differences between bottom-up 

and top-down modeling results. As mentioned that fuel 

price and tax in the EU-15 and Japan are very high 

comparing to USA. The change in price of fuel due to 

CO2 tax introduced will influence to change in demand 

of transportation fuel slightly. This is opposite for the 

USA’s case. Therefore, the price elasticity would be 

reasons of the differences between the bottom-up and 

top-down models, particularly, for the USA, EU-15 and 

Japan. Another reason would be elasticity of 

substitution in the top-down model which is often 

(a) Developed Countries

(b) Developing Countries

Fig. 8.   The derived MAC curves for transport sector by 

region in 2020

Table 2   Comparison of CO2 emission reduction 

potentials in transport sector

Country Reduction Potentials (MtCO2) under 100 USD/tCO2 % 

differenceBottom-up Approach19) This Study

USA 234.0 399.4 +70%

EU-15 177.3 58.6 -67%

China 134.8 108.7 -19%

Brazil 67.6 55.4 -18%

India 61.5 49.7 -19%

Japan 56.7 15.8 -72%
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excluded in the bottom-up sector analysis. This leads the 

range of the reduction potentials by sector estimated by 

the top-down model wider than those from the 

bottom-up model. Therefore, it can be concluded that 

the differences between bottom-up and top-down 

approaches are larger when considering at the sector 

level as same as mentioned in the IPCC’s AR4.

7.    Concluding Remarks

In this paper, we described explicitly the equations 

to derive MAC curves for transport sector by region 

through using the multi-region multi-sector CGE model. 

It found that the sectoral MAC curves derived from this 

paper are the inverse of the general equilibrium 

reduction function for CO2 due to that it depends on all 

prices in the economy including the emission tax given. 

Moreover, the derived MAC curves for transport sector 

for regions are compared to the GHG mitigation 

potentials derived from a bottom-up study. At the CO2 

tax level of 100 USD/tCO2, the ranking of the regional 

reduction potentials in transport sector in 2020 from this 

study are almost same with the bottom-up study, except 

the orders of the EU-15 and China. The reduction 

potentials from the top-down model are considerably 

lower than the bottom-up model expect for the USA. 

Nevertheless, the both studies also showed that the USA 

is the cheapest countries and Japan is most expensive to 

reduce CO2 emissions in transport sector. The main 

factors which influence the differences between 

bottom-up and top-down modeling results by sector that 

could be concluded by this study are the price elasticity 

and elasticity of substitution which are relatively 

different among sectors. It would be also the reason of 

why the reduction potentials by the top-down model are 

wider than the bottom-up model. This conclusion 

supports the issue noted in the IPCC’s AR4 that the 

differences between bottom-up and top-down 

approaches are larger at the sector level.
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Appendix B: Formulation of household’s behaviors
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Appendix C: The equilibrium conditions of the AIM/CGE Global Model

Zero profit conditions

1.   Production of goods except energy:

 (C1)

2.   Armington aggregate of domestic and import goods:

 
(C2)

3.   Household consumption demand:

 (C3)

Market clearance conditions

1.   Capital:

 (C4)

2.   Labor:

 (C5)

3.   Land:

 (C6)

4.   Resources:

 (C7)

5.   Armington aggregate for non-energy goods (ne: sectors 1 to 16):

 (C8)
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6.   Armington aggregate for coal (sector 17):

 (C9)

7.   Armington aggregate for liquid fossil fuel (lq: sectors 18 and 19):

 (C10)

8.   Armington aggregate for gas fossil fuel (gs: sector 20 and 21):

 (C11)

9.   Armington aggregate for electricity (sector 22):

 (C12)

10.   Household consumption:

 (C13)

Income balance conditions

 (C14)
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Abstract
This is a rework of our old file on an explicit spectral decomposition of the mean value

that has been left unpublished since September 1994, though its summary account is given in [9] (see also [11, 
Section 4.6]); here

is a finite Dirichlet series and g is assumed to be even, regular, real-valued on R, and of fast decay on a sufficiently 
wide horizontal strip. On this occasion we add greater details as well as a rigorous treatment of the Mellin 
transform

which was scantly touched on in [9]. In particular, we specify the location of its poles and respective residues, 
under a mild condition on the coefficients .
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0.  We shall proceed with an arbitrary  to a considerable 
extent but later restrict ourselves to the situation where 

 is supported by the set of square-free integers. This is 
solely to avoid certain technical complexities pertaining 
to Kloosterman sums associated with Hecke congruence 
subgroups which do not appear particularly worth deal-
ing with thoroughly, for our present principal purpose is 

to look into the nature of .

Our result on  seems to allow us to have a 
glimpse of the nature of the plain sixth power moment

although we shall set out only certain ensuing problems  
which are to be solved before stating anything precisely. 
In fact, this motivation which was implicit in our origi-
nal file was similar to that expressed in [4]. Our approach 
was, however, more explicit, being a natural extension 
of our treatment of the plain fourth moment  
that was later published in [11].

As we noted at a few occasions, the reason of the 
success with  lies probably in the fact that the 

Eisenstein series in the framework of  is closely 
related to the product of two zeta-values and in that 
the group is of real rank one, with the observation that 
the later is reflected in that the integral for  is 
single (as is inferred from the arguments developed in 
e.g. [2][12]). Extrapolating this, we surmise that a prop-
er formulation of the sixth moment of the zeta-function 
might be expressed instead in terms of a double inte-
gral, since the group  appears to be closely 
related to the product of three zeta-values and it is of 
real rank 2. Nevertheless, we shall consider , as 
it stands between the pure fourth and sixth moments 
and requires less machineries than the plausible direct 
approach to the sixth moment via the spectral theory 
of  such as proposed in [11, 
Section 5.4].

There are at least three ways for us to proceed along. 
The first is the argument that we took in [7][11], the 
second is a representation theoretic approach developed 
in [2], and the third is the one in [12] which is more 
representation theoretic and in fact generalizes to quite a 
wide extent. We shall take the first way, as we have 

J. Res. Inst. Sci. Tech., Nihon Univ. No. 119 pp. 29-64
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indicated above, for it appears to be the most explicit 
and allows us to exploit best the peculiarity of our prob-
lem, i.e., the presence of the square of the zeta-function 
in place of the first power of an automorphic L-function. 
However, it should be stressed that the methods in [2] 
and [12] have a definite advantage over that in [7][11]; 
see REMARK 3 in Section 15 below.

Convention. We shall assume throughout our discussion 
that there exist no exceptional eigenvalues for any Hecke 
congruence subgroup .

Thus all spectral data  should be understood to be real 
and non-negative. With this, we might not appear pru-

dent enough, but actually our discussion of  is 
not essentially affected by the assumption, though we 
are aware of the possible existence of poles in the inter-
val .

REMARK 1. Readers are warned of a number of nota-
tional conflicts, none of which should, however, cause 
any serious misunderstanding. We remark also that our 
discussion contains details which must be often excessive 
for experts; nevertheless, we do this because our old file 
had been prepared for an abortive series of lectures to be 
given to beginners, and we want to keep the original 
style. By the way, there exists as well an abridged version 
of the file that was to be included in [11] as its sixth 
chapter, but the plan was put away because of a reason 
which we can no longer remember.

REMARK 2. We do not mention any of works on mean 
values of automorphic L-functions done in recent years, 
notably by D. Goldfeld and his colleagues, some of 

which in fact come close to our interest on . 
This is solely due to our wish to keep ourselves within 
the framework of the unpublished file of ours; the neces-
sary updating will be made in our relevant forthcoming 
works.

In passing, we stress that our work [8] (see also [11, 
Section 5.3]) on  was done without any knowl-
edge of the existence of A. Good’s work [5] on the Mellin 
transform of the square of an arbitrary automorphic L-
function. His argument depends on a clever choice of 
a Poincaré series, whereas ours exploits fully the pecu-
liarity of the Riemann zeta-function as indicated above 
and produces results more explicit than his. We add that 
our reasoning extends beyond Good’s situation. This is 
a consequence of our latest work [12] lying on the lines 
developed in [2], [7], and [11].

1.  To begin with, we have

where

To study the latter we introduce

with  and . Shifting the 
contour to  lying in the far right, we have

Thus  is meromorphic throughout .
With this, we assume that  and shift 
the last contour back to the original, getting

In the vicinity of the central point , the 
part in the braces is equal to
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where  is the Euler constant. Hence, in particular, 
 is regular in a neighborhood of , 

and we get

The last two terms can be regarded as practically negli-
gible.

2.  On the other hand, we have, in the region of absolute 
convergence,

where  is the Fourier transform of  and  
, say; note that . We have 

say.

Then we apply the dissection:

We have

where and
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where  denotes a generic prime and the condition 
 has been used. The contribution of

 to  is thus equal 
to

3. Next, we shall consider the non-diagonal part . 
We have

We then introduce the Mellin transform

provided . Shifting the last contour 
downward appropriately, we see that  is 
entire in  and an upward shift gives that  is 
of rapid decay in  as far as  and  are bounded (see 
[11, Lemma 4.1]). In particular, we have

with , which converges absolutely if

On this condition, we have
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where  is the Hurwitz zeta-function. Classifying 
l into residue classes mod , we have

4.  We are going to shift the last contour. To this end we 
assume that there exists a large  such that  
and

On this and  with a small , the 
sum

in which we have

and the assertion follows.

With this, we shift the contour in  to . We 
encounter poles at  we may 
assume without loss of generality that they do not coincide. 
Before computing the residues, we note that

is a meromorphic function of the five complex variables.
To see this we note that for any finite 

as it follows via an application of partial summation 
to the Dirichlet series defining . Thus  is, 
provided neither  nor  is too close to 
1,

To show this we use the functional equation

Thus, for ,
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with the Ramanujan sum  mod  and  follows via 
the functional equation for .

Let us compute the residue at . This is 
equal to

Returning to , we see that the contribution of the 
residue to  is

5.  The residue at  is equal to

Thus

as before. Here

and
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where  is the unit measure placed at the origin. One 
could compute the last sum into a finite expression.

The contribution of the residue at  to 
 is equal to

In the last sum we write  with  and 
 and we see that the sum is equal to

where the last product is as in .

6.  Now let us turn to

where  holds. On noting that , 
, we appeal to the functional equation 

. Then the last double sum is equal to

where  is the ordinary Kloosterman sum, and  
.

Thus



− 36 −

Y. MOTOHASHI

and

We put

We have

with

7. We need to spectrally decompose the sums . To 
this end we shall begin with some basic facts about 

a generic discrete subgroup  of  and later 
proceed to the Kuznetsov sum formula for the Hecke 
congruence subgroup .

Thus, let  be a discrete subgroup of  which 
has a fundamental domain of finite volume. We call  a 
cusp of  if and only if there exists a  such that  
is parabolic, i.e.,  and  . 
Let  be , i.e., the stabilizer of . 
Then  is cyclic, so all elements in it are parabolic. 
Hence, there exits a  such that  and 

 with .

The discussion below depends on the choice of  
which is not unique. If  is another choice, then there 
exists a  such that . In fact, since 

, we have  or  
. On the other hand  implies 

that  and  
yields that , that is,  and the assertion 
follows.

Let  be a -automorphic form of weigh , with a 
positive integer  namely, for ,

The function  is of period . In 
fact,

which is called the Fourier expansion of  around the 
cusp .

Note that this expansion depends on the choice of 
. In fact If  is another choice , then  

with a . We have 
. That is,  is multiplied by 

.

Thus, if  is regular near , then the function 
 is single valued 

and regular on a small disk centered and punctured at 
the origin. Hence
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If  is regular on the upper half plane 
 and  for any 

 and any , then  is termed a holomorphic cusp-
form. Let  be the space of all cusp-forms of weight 

. Then  is a finite dimensional Hermitian space 
with the Petersson inner product

where . If , then  
or , that is,  mod  as well as 

. Moreover, if , then 
, that is,  or . Hence

We observe that if  appears in the right 

side, then  does for all 
. In fact,  and thus 

is an element of . Moreover, if 
 , then 

.

This means that

and we get , , which confirms our claim. On 
the other hand, since , we 
should classify the summands in  according to the 
double coset decomposition , which naturally 
we could have introduced already at .

We have thus

We let  stand for an orthonormal 
base of .

8. Let . We introduce the Poincaré series

This is a holomorphic cusp form of weight  for any 
integer . We shall confirm this claim, though we 
skip the convergence issue, which causes no difficulty 
when .

First, each summand is a function over . In 
fact, if , then  and 

 mod 1 as well as 
. Also the relation 

 is obvious; and  is reg-
ular over . Thus, it remains to consider the Fourier 
expansion at a given cusp . We have

As to the remaining part, we have

Here

More explicitly, we have the relation  is 
equivalent to . With this one 
may proceed just in the same way as the case of the full 
modular group and get

is a Kloosterman sum associated with , where  runs 
over the representatives of  with the same  
in the sense remarked after . The expression  
and the constant  in  depend of course on the 
choice of , .
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The last summands are functions on . In fact, 
let . Then   or

, which means that there exist 

two integers ,  such that . Hence 
 and ,  mod . Also, for each  

there are at most finitely many double cosets having  as 
the lower-left element; otherwise the convergence would 
be violated.

On the assumption that there exists a  such that 
for any non-zero integers ,  and any pair of cusps 

, 

The left side is

We have

implying that  is a holomorphic cusp form of weight 
.

9.  We consider the spectral decomposition

where we have used that 
; in fact, since 

, we have .

On the other hand, we have in much the same way

provided  satisfies .

The case  can also be treated in much the same 
way as is done with the full modular group (see [11, 
pp. 52–54]), excepting that  should be replaced by 
the assumption that there be a constant  such that 
for any non-zero integers ,  and for any pair of cusps

, 

Hence we have obtained the Petersson Formula:

Lemma 1. For 

where we have put, following ,

On this the assertion  holds for all .

10.  We turn to real analytic cusp forms. The procedure 
is similar to the holomorphic case and also to the full 
modular situation, and we can be brief.
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Let  be a real analytic cusp form of weight zero with 
respect to  so that  for all , and 

with . Since  is of 
period one, we have the Fourier expansion

On the assumption ,  is regular for
, and also  as 

. In particular,  if .
Also we have

It can be shown that  is meromorphic for 
all . Moreover, in the case of congruence subgroups, 

 is regular for  except for a simple 
pole at .

Let  be a complete orthonormal base of 
the cuspidal subspace of  such that   
with , and

where .

One may consider more generally the decomposition 
of the space ,  into irreducible 
subspaces and appeal to the theory of representations 
of the Lie group . This will allow us to deal with all 
cusp forms of various weights in a unified fashion. 
However, here we shall rather follow the argument due 
to Kuznetsov and others.

Thus, let us introduce the Poincaré series of the Sel-
berg type

11.  We collect here analogues of Bruggeman’s and 
Kuznetsov’s formulas: On the basic assumption  
we have:

Lemma 2. Uniformly for any  and ,

with

where  and

We require that

We have then

and the Eisenstein series , associ-
ated with the cusp . Arguing as in Section 8, we have 
the Fourier expansion

We put also . We suppose 
that  is such that no  has poles in the interval 

. Then we have the spectral expansion: For any 

pair , it holds that

where  depends on ,  in . In particular, we have 
the bound
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Lemma 3. Let  be even, regular and of fast decay on 
the strip  with an . Then it holds that 
for any  and , 

Lemma 4. Let  be smooth and of fast decay over the 
positive real axis. Then we have, for any  and 

, ,

where

where  runs over all inequivalent cusps, and

12. With this, we shall consider the specialization 
. Our discussion overlaps, to a certain extent, with 

that developed in [3]; however, the present work can be 
read independently of it. In this section we shall fix a 
representative set of all cusps inequivalent mod .

We introduce the stabilizer of 
the point  in  and the double coset decomposition

where the symbol  is to be regarded temporarily as to 
be just a label. We begin with a particular , and trans-
form it to a matrix suitable for our purpose. We thus 
look into the product

where the middle matrix on the left side corresponds to 
. It is to be observed that  is fixed mod , because of 

the action of . We assume that . We have 
, and we claim that this can be made equal 

to . In fact  is soluble 
in  and , for ; then  mod 

, and  can be a prime large enough so that 
, and thus . With such a  we may 

choose  to satisfy , which confirms our 
claim. On the other hand, if , then it suffices to 
put , . Thus we may suppose that 

 with ; that is, each coset in  contains 
elements of this property.

We then apply  to the point , getting

This means that , with the current defi-
nition of , is the full set of inequivalent cusps mod 

. In fact, that  implies read-
ily that ; and the stabilizer in 

 of  is  with , 
provided . The labels  indeed coin-
cide with their former designation. Also, it should 
be noted that the element  is unique to each dou-
ble coset, which can be proved by considering the re-
lation with respect to 
either mod  or mod , getting  and , re-
spectively. Namely, if , then 

.
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Hence, it remains to see when the relation

with  mod .

We write

Namely, when  varies with  fixed, then  and thus  
runs over the complete residue classes mod  
while satisfying . If , then 
obviously there exists an  such that 
mod  and .

Collecting the above, we have

Lemma 5. A complete representative set of cusps inequiva-
lent mod  is given by

and thus ,  mod ,  mod ; namely

holds, where the two matrices are in  with  and
. We have

withwith

Hence

whose cardinality is

13. Let us fix the stabilizers of those cusps given in 
. To this end we note first that if  is a cusp of 

a discrete group , then

In fact, since , , we see
that , and the assertion follows with .
If  with , , then

which is equivalent to

Hence, on noting that , we get

Obviously we have . Moreover, we
have

and

We put
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14. In the the special instance where  with
, we shall consider the structure of the double

coset decomposition  and associated
Kloosterman sums.

To this end we put

with  (cf. [6, p. 534]; note that there q is 
square-free but here not assumed to be so). In fact, we 
have, by (13.5),

as is implied by (13.8).

We shall prove that

On the other hand, we have that

and that . This 
proves (14.3).

Hence, we have, with ,

where  mod . The choice of a particular val-
ue of  is irrelevant to our discussion of the Klooster-
man sums, as we shall show later. Note that

thus for 
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say.

With this, let  be the characteristic function of the 
set . Then Kloosterman sums associ-
ated with the two cusps , have moduli 

; and under  we have that

decomposition; that is, in the big cell of  we 
have

where the last sum is over ,  mod , 
 mod , and the 

last member is an ordinary Kloosterman sum.

It remains to show the irrelevance of the choice of 
values of . In fact, if we replace  by , 

, then the first equivalence assertion in  
does not change, for we have .

In particular, we find that if , , and 
, then

on the specification  of .

15.  We still need to see if  is satisfied by the generic 
. Until very recently we had been unable to locate 

any rigorous treatment of those generalized Kloosterman 
sums over  in literature, excepting [9] and [10] 
where the case with  square-free is explicitly discussed 
on the basis of . With this situation, R.W. Brugge-
man kindly provided us with a treatment [1] of the sums 
using a partly adelic reasoning; and it is assured that 

 indeed holds with any . Here we shall prove 
the same with an alternative elementary method; this 
section can be read independently of [1].

We shall first redefine the Kloosterman sums associ-
ated with the two cusps , which are in the 
set , by introducing the convention

where . In fact, by  we need to consider 
the double coset decomposition

with  as in Section 13, which is effective within this 
section only. Note that when  this does not 
coincide with ; when discussing the absolute values 
of generalized Kloosterman sums, obviously no differ-
ence is caused. Also, it is expedient to use the Bruhat 

where , since  
. The expression  readily follows. In passing, 

we note that

for the number of summands on the right of  is less 
than or equal to . In fact, a unique  mod  
corresponds to each , , or  classes  mod 

 to each of  classes  mod  with .

We remark that  is a 
function over  mod  and  mod . To see this, we 
use the relation
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and  gives that

which immediately implies .

Hence we have

where  with , and  mod ; 
note that  are cusps of . In fact, computing 
the lower-left element of , we see 
that the value of the left side of  equals 1 if and 
only if

We have thus obtained the factorization

with the implied constant depending only on . Thus we 
have, for any ,

provided , , which proves the
assertion.

Next, we shall show that if  mod , then

and this is equivalent to the congruence

Here we have

with  mod ,  mod . Inserting 
this into , putting  mod ,    mod 

,  mod ,  mod , and further, noting 
the congruence property of  proved in , 
we may write  as

where the last S-factor is an ordinary Kloosterman sum.

In particular, applying  and the Weil bound, 
respectively, to the first and the second factors on the 
right side of , we get

which is finite if . Therefore, we have proved 
that any  satisfies  with .

REMARK 3. The methods in [2] and [12] extend to 
 with an arbitrary . Since they are independent 

of any non-trivial treatment of generalized Kloosterman 
sums, the above confirmation of  for generic  
could be regarded as redundant, as far as the spectral 
decomposition of  is concerned.

16.  With this, we return to the second line of .
We stress that hereafter we shall again work with the
definition .

In view of  we have
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We have

Thus Lemma 4 gives the expansion

where the sums converge absolutely if  is sufficiently 
large, because of . We shall especially require 
uniform bounds for these functions. The Dirichlet series 
involved in the last integral are to be discussed in detail 
later, but under the restriction on  mentioned in the 
introduction.

In our continuation procedure of the right side of 
, we exploit the fact that above -functions admit 

meromorphic continuation to  with respect to , and 
with respect to  as well in the second and the fourth 

-functions. To reach  we appealed to Lemma 4, 
and hence the bound  becomes crucial. Moreover, 
the contribution of the continuous spectrum in  
makes it clear how important for us to have explicit 
representation of Fourier coefficients of Eisenstein series 
at each cusp, and this is of course closely related to 
the structure of generalized Kloosterman sums which is 
partly discussed in Section 15.

We begin with relations between  defined by 
 and the two basic involutions , and 

, which satisfy

17. We need to continue  to a neighborhood of 
the point . The continuation of 

 is known already ([11, Section 4.6]), and we are 
concerned with the nature of -functions:

as Lemma 2 and the rapid decay of  
yield absolute convergence on the right side, provided 

 (see [11, Section 4.5]).

where ,  are equivalent to , , respectively. 
For instance, the latter identity is due to the fact that 
the stabilizer of  is

where

Further, by  we have that
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(see the remark made prior to ).

The reflection operator  is isometric over , 
for  is a fundamental domain, and

Besides, we have  as well as the first relation 
in . Hence  is a cusp form belonging to the 
same eigenspace as , for  

 converges to  as  tends to . Thus  can be 
diagonalized on each eigenspace of ; that is, we may 
choose an orthonormal base  in such a way that

for  is a fundamental domain of ; 
moreover,  converges to 
 as z tends to . Since , we may assume, 

besides , that

which is in . Hence we have

Next, we consider the action of the Fricke operator 
. We put . Then each  is  invari-

ant, and is a cusp form such that ; in 
fact it is a unit vector as

Also, we observe that

This implies that

namely

In particular, we have

Further, we observe

that is, we have

18.  We may now prove the functional equation for 
; note that we have (17.10). We 

have to discuss two cases separately according as  
 or .

The case : We have, by (17.9),
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On the other hand, by (17.15), that is,

By the duplication formula for -function, one may 
transform this relation into

which is entire in , for  decays exponentially as  
tends to . Namely, the function  is entire, 
and we have

The case : We have

We put . We have

which implies that as 

as well as

where the constant  depends at most on , and the 
implied constant on .

The second assertion follows via a convexity argument.

We may omit the discussion on , as it is analogous 
to .

19.  We turn to . There are at least two possible 
ways for us to take here. One is to exploit the theory 
of Hecke operators in order to relate  with a product 
of two values of Hecke L-functions analogously as we 
did in the case of  in [11]. However, the cusp 
form  cannot generally be assumed to be such that the 
corresponding Hecke series is fully decomposed into 
an Euler product. This is because those  with

We have also

Lemma 6. The function  is entire, and it holds 
that for any 

Namely, we have that

and

Hence,
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 are not well related to eigenvalues of Hecke op-

erators, and thus the corresponding part of  

causes difficulties in the continuation as well as the esti-
mation procedures, which is a serious drawback of the 
method as far as our present purpose is concerned. One 
may appeal to the notion of new forms whose Hecke se-
ries admits a full Euler product; yet it does not seem to 
resolve our difficulties. Hence, we shall take the second 
method which is in fact a special instance of applications 
of Rankin’s unfolding method (see [11, pp. 181–182]). 
This causes, however, still a technical difficulty, for it re-
quires us to have an explicit description of the scattering 
matrix of  and all Fourier coefficients of Eisenstein 
series at each cusp (see (24.1) below). This task is highly 
involved. The note [1] contains, in fact, a discussion of 
the arithmetical nature of those Fourier coefficients and 
the result appears to be essentially adequate for our pur-
pose, if we let our reasoning in the later sections be 
somewhat inexplicit; note that the same can be done by 
extending (15.14) to a full localization. Under such a 
circumstance, it may be appropriate for us to make here 
a compromise by introducing the assumption that A is 
defined by a sum over square-free integers, as underlined 
in the introduction. Since we have (14.7), this eases our 
task considerably, yet it does not seem to restrict the 
scope of our method. In the future, we shall work out a 
fuller account of .

20.  Thus, we shall hereafter assume that

where the last numerator is a Ramanujan sum. We 
have

By Lemma 5 in Section 12, we have now

and we have (14.7) for any combination of cusps. In 
particular, for those Hecke congruence groups that are 
relevant in the sequel, (9.6) and thus Lemmas 2–4 have 
been verified, without the discussion in Section 15.

To make Lemmas 3–4 more explicit, let us compute 
the Fourier coefficients of Eisenstein series at each cusp. 
Thus, by the assertion (14.7),

Next,

We have
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and Lemma 9. Let  be smooth and of fast decay over the 
positive real axis. Then we have, for any  and 

,

where  and  is the principal character 

modq. Thus,

where  in the first sum, and the 
transforms  are as in (11.6).

We specialize the last assertion as in (14.8), and have, 
in place of (16.4),

Collecting these assertions, we obtain in particular 
that

Lemma 7. The function 
 is regular for all s, and it is

 as  tends to infinity, as far
as s remains bounded.

21.  Lemma 2 holds safely for , , and 
Lemmas 3 and 4 become as follows (see [10]):

Lemma 8. Let  be even, regular and of fast decay on 
the strip  with an . Then it holds that 
for any  and 

with  as in .
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23.  We shall assume  till the end of Section 24.

Let  be the Eisenstein series for , and put 
, so that

where the error terms decays exponentially and is
 as  tends to infinity and to , respectively.

We have the functional equation

with

with , where  in the last product; 
and we have used the fact that  and thus 

, .

22.  We now deal with the function . As re-
marked in Section 19, we shall employ the unfolding 
method.

To this end we introduce the scattering matrix S of 
. We thus write (20.3) as

contradiction, and hence  holds for all complex 
 by analytic continuation as far as  is finite. 

Consequently, we have got also

We put

and

so that

provided both sides are finite. To confirm this, we let 
, Im  be sufficiently large. Then  implies in 

particular that  is in an 
obvious vector extension of . However, this 
vector function, if not trivial, has the eigenvalue  

against  the hyperbolic Laplacian. Since  is selfad-
joint, its eigenvalues  should be real, which is a 

and

which shows that  is regular for all . 
We have, on a suitable assumption on  to secure 
convergence, that

On noting this, we consider also the relation
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where where y0 is chosen so that the remainder domain 
 is a compact set in . We then apply 

Lemma 7 and  to each term of . We obtain 
the crucial assertion

Lemma 10.  The functionswith  an analogue of .

By , we have 
, and thus

We then let  be negative and so large that both 
 and  are absolutely 

convergent. In this way we obtain, via Lemma 2, 
Stirling’s formula, and the convexity argument,

Lemma 11.  Provided that  and  are bounded, we 
have

That is, we have

which vanishes if .

Put

Then we have, by  and ,

In particular, we get the functional equation

24.  We decompose the left side of  as

of the complex variables  and  are all entire over .

In fact, it suffices to note that the multiple of  

by the factor  
 is regular in  and  by Lemma 7.

On the other hand, we have, by ,

Inserting this into , we get

where  depends only on  and , and the implied 
constant additionally on cd too.

25.  We still need to deal with the case . Here 
we shall have to overcome an additional technical diffi-
culties, because Eisenstein series of non-zero weights 
naturally come up in our argument (see [11, Section 
3.2]).
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We observe then that  is even in  
as  implies, and  is odd by . 
Hence  becomes

provided absolute convergence holds throughout.

We decompose the left side of  in just the same 
way as we did in , and see, via , that

In fact, writing ,  for a regular 
function , we have 

 by the Cauchy–Riemann equation applied to 

. We put ,  , and get  
, which confirms

.

To offset the automorphic factor in , we intro-
duce

In the region of absolute convergence, we have, by 
,

We should note the relation

which can be confirmed by setting ,  
in the above; and more precisely

In particular, we have the functional equation

We introduce

with our present vector  such that  . We 
have

with

Also,  implies that

as  tends to infinity while  remains bounded, which 
means that the left side is regular for all , too. This is 
a counterpart of Lemma 7.

since

are all regular in both  and . Also,  gives, via 
,
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and in particular Let us make the last factor in  explicit. Thus, 
comparing  with [11, (4.3.13)–(4.3.14)], we see that 
the exchange of variables u and z is to be applied to [11, 
Sections 4.6–4.7] to get corresponding identities. More 
precisely, we have, under  and ,

Hence, by , we have

With this, we obtain

Lemma 12.  With  as well, the assertions of 
Lemmas 10 and 11 hold.

This ends our treatment of  and  . We omit the 
discussion of Lj,k, Dj,k, for they are analogous.

26.  Now we may return to . Here we shall 
deal with the first term on the right, the contribu-
tion of real analytic cusp forms. Its contribution to 

 is, via , , , equal to

corresponding to [11, (4.4.12)] and [ibid, (4.4.15)], 
respectively. We then put

with

By Lemmas 9–12, we see readily that the expression 
 is meromorphic over , and especially in the 

vicinity of  it is regular; the necessary facts about 
 is to be given shortly. Hence its value at  equals

We have another contribution of real analytic cusp 
forms that comes from , which is, however, exactly 
the same as .

and

The paths in  and  are such that the poles of 
the first two gamma-factors and those of the other three 
factors in each integrand are separated to the right and
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provided the left sides are well-defined.

Under , we can obviously take  as the con-
tours in the last three integrals; and we have, for ,

andthe left, respectively, by the path, and  are 
assumed to be such that the path can be drawn. The 
path in  separates the poles of  

 and those of  

 to the left and the right of the path, 
respectively. We have the relations

since  and  imply

with . We have

In particular, we have, after continuation,

and

From this, we get immediately

Lemma 13.  Provided the polynomial  is supported by 
the set of square-free integers, the contribution of real an-
alytic cusp forms to  is equal to

where

The fact that the parity symbol  appears in this way 
will turn out to be crucial in our later discussion of a 
certain non-vanishing assertion (Sections 31–36).

The contribution of holomorphic cusp forms is analo-
gous, and we may skip it.

27.  We turn to the contribution of continuous spectrum; 
and we see from  that we need first to consider the 
sum

Thus
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Next, we need to treat Hence,

Analogously to a famous formula of Ramanujan, we 
have

28. Under the conditions ,  and by , 
, , the contribution of the continuous spec-

trum to  via  is equal to

Thus,

and

We have

where
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with

One may carry out the last sum and transform  and 
thus  into a more closed expression that is a product 
over prime divisors of ; however, for our aim it does 
not seem particularly expedient to do so, and we leave 

 as it is.

To continue  to a neighborhood of  , we need 
to shift the contour rightward and leftward appropri-
ately as is done in [11, Section 4.7], and there appears 
a residual contribution, which will be treated in detail 
later. Here we shall compute, at  , the integral thus 
continued.

By , we have, for ,

This implies that

We have obtained

Lemma 14.  Provided the polynomial  is supported by 
the set of square-free integers, the contribution of continu-
ous spectrum to  is equal to
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29.  We shall give the continuation procedure of (28.1) 

to a neighborhood of  . This is, however, analogous 
to that pertaining to the pure fourth moment  
that is developed in [11, Sections 4.6–4.7]; and we can 
be brief.

By (26.9)–(26.11), we transform (28.1) into

point  if a, b are allowed to vary arbitrarily. 
Thus, if the length of the polynomial A increases indefi-
nitely, then the nature of the main term of  
should become subtler.

30.  With this, we have essentially finished spectrally 
decomposing . Although we have not yet com-
puted the main term explicitly, the above is already 
quite adequate to analyze the error term in the asymp-
totic formula for the unweighted mean

(see [11, (4.6.14)–(4.6.15)]). We shift the last contour to 
the far right, and we obtain a meromorphic continuation 
to a domain containing the point  ; then, restricting 
ourselves to the vicinity of  , we shift the contour back 
to the imaginary axis. The resulting integral has been 
considered already in the last section.

The residual contribution of the last procedure takes 
place when

With this in mind, we shall investigate the location of 
poles of the Mellin transform , focusing our at-
tention to the contribution of real analytic cusp forms, 
for the relevant part of  seems to be the most 
interesting. 

Having the assertion of Lemma 13, the argument of 
[11, Section 5.3] works with  as well without 
any essential change. We find, on the assumption on 
eigenvalues  made in the introduction, that

Lemma 15. The function  is meromorphic over 
the entire complex plane. It has a pole of the fifth order at 

; and all other poles are in the half plane  . 
More precisely,  has a pole at  , , if 
and only if it holds that

(see [11,(4.6.16)] and the bottom lines of [ibid, p. 173]). 
It should be stressed that this assertion depends on 
the fact that the singularities, save for those belong-
ing to , that we encounter in this proce-
dure are independent of the location of ; es-
pecially those of  come only from the 
first product on the right of  and are independent 
of .

REMARK 4. However, one should note that the set of 
poles of  as a function of » cluster at the 

and applying the functional equation for  to , 
this becomes

in which the second sum is over ·j = · with  
.

We are going to show that if A is fixed besides a 
natural condition on its coefficients, then (30.2) holds 
for infinitely many ·. To this end we shall establish in 
the sequel that there are infinitely many · such that

REMARK 5. As to the possible poles coming from the 
contribution of the continuous spectrum, one may fol-
low the discussion in [11, p. 211]. In view of (28.7), we 
may have poles at
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with an integer , where the sum is extended over 
 with a fixed pair  

; also the weight h is assumed to be an even, entire 
function such that

andwhere  with . Thus it can be asserted, 
somewhat informally, that as the length of A tends to 
infinity the imaginary axis is gradually filled up with 
poles of .

31.  To deal with , we adopt the argument of 
[11, Section 3.3]. Thus, on noting the definitions (17.1) 
and (26.2), we consider more generally the sum

(see [11, p. 113]). Moving the last path far down, we 
see that  is entire. Also we have

with a certain , in any fixed horizontal strip. By 
Lemmas 10–12,  is meromorphic over , and 
regular in the vicinity of ; in particular, we have

In the region of absolute convergence, we have, by 
definition,

with

where . The integrand decays exponen-
tially, which facilitate our discussion greatly. We stress 
that the presence of the factor  in  has induced 
this effect.

Thus in  we have

and

We apply (21.1) to the inner sum, getting

where

in which we have used  with , .

32.  To transform  we use the formula

where

and (32.1) is replaced by
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with 33.  We insert (32.11) into (32.8). We get under (32.10) 
that

with aa¹ ´ 1 mod cl.

We introduce further a sub-region of (32.7):

in which  appears only when djf.

The expansion (33.1) with (33.2) has been proved 
under the assumption that  and (32.10) holds. 
However, the former can be dropped now; and also  
and  converge absolutely if ,  

. In particular,  is regular at 

, and there (33.1) holds.

Further, shifting the path in (31.9) upward and 
downward appropriately, we have the following continuation 
of  to the domain :

where

where

On this we insert (32.5) into (31.7), and get

The right side of (32.5) converges absolutely. Then we 
assume that

Then we move the path in  to . On the as-
sumption , we have, by Estermann’s functional 
equation (see [11, Lemma 3.7]),

and

where
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where

We see readily that  and  are regular at . 
As to  , the factors  and  

 diverge at the point unless cd = 1; however, 
 itself must be regular there, for , 

 are regular, and thus  
as well.

Hence, from (31.1), (31.6), (33.1), and (33.3), we 
obtain

34.  The last equation gives

Lemma 16.  We have, with the weight h as above,

where
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For 0 < x < 1

Here  is the divisor function, 
, and  vanishes unless .

This is a counterpart of [11, Lemma 3.8], and follows 
immediately from (31.4), (33.2) and (33.5). We have 
left , , without computing it explicit-
ly, because it seems better to avoid the highly com-
plicated computation of  caused by the two 
products over  mentioned above; and in fact those 

 will readily turn out to be negligible in our 
application of (34.1) to be given in the next section.

From [11, pp. 119–121], we quote the following:

where  is a polynomial of degree , whose 
coefficients are independent of ·j and bounded by a 
constant depending only on ± and N.

In fact, this assertion is a counterpart of [11, Lemma 3.9] 
and the proof is analogous; the necessary change is only 
in that we now use (23.13) instead under the assumption 

 as  if .

With this, we now set, in (34.1),

For x > 1

where  ,  .

35.  We shall continue our discussion, adopting the ar-
gument given in [11, pp. 124–130]. Thus we first state 
the following approximation for : Let K tend 
to infinity, and assume that

For x = 1

with

Then we have, for any  and  logK with a 
sufficiently large ,

with the implied constant depending only on ±, C, and 
N. Here  and
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To compute , , let us putWe have

with an admissible error (see [11, p. 127] for a descrip-
tion of ).

We have

where the five terms correspond to those on the right 
side of (34.1), respectively, with the present h and

. Since we have imposed 

(35.1)–(35.2), those terms with  can actually be 
ignored, and it suffices to consider instead

The discussion in [11, pp. 128–129] works just fine with 
our present situation as well; and the contribution of 

, turns out to be negligible.

REMARK 6. However, if the uniformity in the Stufe 
cd is required, then this part of our argument should 
become subtle.

As to , its contribution to (35.8) is equal to

where we have used (35.6), and

The latter can be replace by

We have, by (34.1) and (35.4),

Then

Hence, we get

36.  It remains for us to deal with , .

We have obviously

(see [11, p. 129]).
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Our result suggests that the Mellin transform

where  with .

Therefore we have established

Theorem. Provided  for square-free n and = 
0 otherwise, the function  has infinitely many 
simple poles on the line  .

This restriction on the support of ®n will be lifted in our 
forthcoming work.

should have the line  as a natural boundary, for  
 and  may be replaced by a finite ex-

pression similar to  via the approximate functional 
equation. The same was speculated also by a few peo-
ple other than us, but it appears that our theorem is 
so far the sole explicit evidence supporting this conjec-
tural assertion. At any event, in view of of REMARK 5 
above, it appears reasonable for us to maintain that 

 does not continue beyond the imaginary axis.

This entails

Problems:

(1) Is the set  dense in the half line 
?

(2) Is the set of · satisfying (30.3) dense in the positive 
real axis?

(3) Is the set of · satisfying (30.3) dense in any half 
line?

(4) Is the set of · satisfying (30.3) dense in any interval 
whose left end point is the origin?

Obviously (1) is to be solved first and (2) must be far 
more difficult than (1). The third, weaker than (2), 
appears highly plausible in the light of Lemma 17; on 
the other hand our method does not seem to extend 
without new twists so as to include the situation of (4), 
i.e., the detection of low lying poles.

ADDENDUM. Recently C.P. Hughes and M.P. Young 
(arXiv:0709.2345 [math.NT]) obtained an asymptotic 
formula for the mean value (30.1) where the length of 
A is less than T ´ with any fixed ´ < 1/11. They did 
not employ the spectral theory of Kloosterman sums. 
Our method should give a better result than theirs, if it 
is combined with works by N. Watt on this mean value.
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Ⅰ　趣　旨
　この要項は，日本大学理工学部理工学研究所研究ジャーナル刊
行内規（以下内規という）第 14 条に基づき，日本大学理工学部理
工学研究所研究ジャーナル（以下研究ジャーナルという）の内容，
投稿，執筆等についての必要事項を定める．

Ⅱ　論文内容・投稿資格等について
1　研究ジャーナルの定義
内規第 7条に定める研究ジャーナルの内容区分の定義は，次

のとおりとする．
① 　一般論文とは，通常の意味の一つの独立した原著論文で
ある．

② 　ノートとは，断片的ではあっても，新しい価値ある事実
を含む論文で，著者又は著者以外の既往の論文に対する補
遺・意見等も含まれる．

③ 　速報とは，独創的で重要な発見又は結論を含み，それを
承認するに足りるデータを備え，他に優先して掲載する必
要のある論文である．この詳報は，後日，一般論文として
投稿することができる．

④ 　総合論文とは，著者が発表した複数の原著論文を関連づ
け，一連の研究成果としてまとめて執筆したものである．

2　研究ジャーナル特集号の定義（以下特集号という）
特集号は，大学の命による調査団の報告書，その他理工学研

究所が必要と認めたものであり，編集は当該調査団等の責任に
おいて行う．
3　投稿資格
研究ジャーナルの投稿資格は，次の各号のいずれかに該当す

る者とする．
① 　日本大学理工学部・短期大学部（船橋校舎）（以下学部等
という）に在職する者

② 　日本大学大学院理工学研究科博士後期課程，前期課程及
び日本大学理工学部の在学生（ただし，指導教員の承諾を
得なければならない）

③ 　多年にわたり専任教員として理工学部に勤務し，現在非
常勤講師である者

④　編集委員会（以下委員会という）が特に認めた者
4　原稿ページ数
研究ジャーナルの内容区分の文字数及び頁数は，以下のとお

りとする．
区　　分 一般論文 ノート・速報
文字数 15,000 文字程度 5,000 文字程度
頁数 10 頁程度 4 頁程度

＊　総合論文は，著者と委員会で相談の上決定する．

5　投稿の受付
投稿を希望する者は，所定の理工学研究所研究ジャーナル投

稿申請書，掲載論文著作権委譲確認書とともに原稿を研究事務
課（以下所管課という）に提出する．

6　原稿の受付及び発行時期
論文誌の発行は年 3回とし，原稿の受付及び発行時期は次の

とおりとする．ただし，内規第 7条及び本要項Ⅱ - 1 ，2 に該当
しない原稿は，執筆者に返却することがある．

原稿の受付 発行時期
2 月末 6 月末
6 月末 10 月末
10 月末 翌年の 2 月末

7　受付年月日
受付年月日は所管課で受付を行った日とし，受理年月日は査
読結果に基づき委員会が掲載を決定した日とする．
8　原稿の提出部数等
① 　原稿の提出部数は，一般論文，ノート及び総合論文の場
合は，正原稿（図，表，写真を含む）1部並びに複写 2部（図，
表，写真を含む）とする．
② 　速報は，正原稿（図，表，写真を含む）1部並びに複写（図，
表，写真を含む）１部とする．
③　前 2項はいずれも正原稿の電子データを提出する．

9　論文掲載の採否
論文掲載の採否は，研究ジャーナル刊行内規第 11 条に基づき

委員会が決定する．
10　投稿の取消し

査読過程の修正・内容照会等において，執筆者による修正原
稿の提出が依頼の日から 2か月以上経過した場合は，最初の原
稿受付日を取り消し，再提出された日を新たに原稿受付日とす
る．ただし，1か年以内に原稿の再提出がない場合は，委員会
の議を経て投稿を取り消す．
11　原稿料
原稿料は，支払わない．

12　抜き刷りの給付
執筆者には，研究論文集の抜き刷りを，30 部までは無償で給
付する．ただし，30 部を超える部数を希望する場合は，執筆者
が相当分の実費を負担する．

 以　上
（内規抜粋）
第  11 条　論文の掲載の可否は，査読報告書に基づき審議の上，
委員会が決定する．
2  　 2 名の査読者の査読判定が共に掲載可又は否の場合は，
特に問題がなければ判定どおり決定する．
3  　 2 名の査読者間で査読判定が相違した場合，委員会は第
3の査読者を選び，査読を依頼し，その結果に基づき委員
会で審議をする．
4  　査読判定において掲載否の理由が「照会に対する回答不
十分」等の場合は，委員会において回答不足項目を検討・
審議し，適切な措置をとる．
5  　査読判定で研究ジャーナルの種類の変更を求められた場
合は，委員会で検討の上，著者とその対応を協議・決定する．
6  　特集号における論文掲載の可否は，当該調査団等が行う
ものとする．
 以　上
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１　受付原稿
　 受付原稿は，執筆要項に従って執筆したもので，原則として
Microsoft Word で作成した電子原稿（以下原稿とする）とする．

２　原稿の標準的作成方法は，次のとおりとする．
①　 用紙サイズは，A4判縦長とし，題名，著者名，概要及びキー
ワードは，横書き１段とし，Microsoft Word の 43 文字×
38 行を基準とする．本文，参考文献及び付録は，横書き２
段組とし，Microsoft Word の 20 文字× 38 行２段組を基準
とする．余白は，上 25 ㎜，下 25 ㎜，左 25 ㎜，右 25 ㎜と
する．

②　 フォントは，邦文においては明朝，欧文はTimes New Roman 
を基本とする．

③　 文字ポイントは，表題を 12pt. とし，それ以外は 10.5pt. と
する．邦文はひらがな，カタカナ，漢字を全角とし，欧文
英数字は半角を使用する．

④　邦文論文の順序
（1）邦文題名
（2）邦文著者名
（3）欧文題名
（4）欧文著者名
（5）欧文概要
（6）欧文キーワード
（7）本文
（8）参考文献
（9）付録
⑤　欧文論文の順序
（1）欧文題名
（2）欧文著者名
（3）欧文概要
（4）欧文キーワード
（5）本文
（6）参考文献
（7）付録

３　第 1 ページの体裁
①　邦文題名は，中央揃えで記載する．
②　 邦文著者名は，題名から１行開けて中央揃えで記載する．
名前の後には，著者の所属を参照するために，上付きで記
号を付記し，脚注（後述）で所属を記載する．

③　 欧文題名は，邦文著者名から１行あけて中央揃えで記載す
る．

④　 欧文著者名は，欧文題名から１行あけて中央揃えで記載す
る．なお，著者が複数の場合，最後の著者名とその直前名
の間は and で区切り，それ以外はコンマで区切る．

⑤　 概要は，欧文著者名から１行あけて，強調文字の英文で中
央にAbstract と書き，200words 程度からなる概要本文を
記載する．

⑥　 キーワードは，概要から１行あけて，英文でKey Words: の
文字列に続き，5words 以内で記載する．

⑦　本文は，キーワードから１行あけて記載する．
⑧　著者の所属は，脚注に次のとおり記載する．

　邦文の場合
　*   日本大学理工学部物質応用化学科；日本大学理工学部理
工学研究所材料創造研究センター

　欧文の場合，英文なら
　*   Department of Materials and Applied Chemistry, College 
of Science and Technology, Nihon University；The 
Center for Creative Materials Research, Research 
Institute of Science and Technology, College of Science 
and Technology, Nihon University

４　本文の体裁
①　 章・節・項は，次のとおりとする．本文は，それぞれから
１行改行して記載する．

表記 表示位置
章 1.　2.　3. 行の中央
節 1.1　1.2　1.3 行の左端から１文字目項 1.1.1　1.1.2　1.1.3

②　句読点
　　邦文は，全角カンマ（，）と全角ピリオド（．）を使用する．
　　欧文は，半角カンマ（,）と半角ピリオド（.）を使用する．
③　数字
（1）原則として算用数字（アラビア文字）（半角）を使用する．
（2）熟語，成句，固有名詞は漢数字を使用する．
（3） 第一に，第二に，一つ目，二つ目などは，論文中で漢数

字又は算用数字（半角）で統一する．
④　図と表
（1） 図及び表は，縮尺を考慮した完全な図面として文中に挿

入する .
（2） 図（グラフ，説明図，写真等）は，図 1，図 2 として，そ

の次に図の表題を記載する．図の番号及び表題は，図の
下に記載することを原則とする．

（3） 表は，表 1，表 2 としてその次に表の表題を記載する．表
の番号及び表題は，表の上に記載することを原則とする．

（4） グラフの座標軸の説明は横書きで，縦軸は下から上へ，
横軸は左から右へそれぞれ中央に記載する．

　　例：攪拌トルク□T□〔N・m〕
　　　　 Distance from wall □ y □〔cm〕※□印はひとコマ

あける意味
（5） 図表等を他の文献から転載する場合は，著者の責任にお

いて転載許可を得て，その出展を明記すること．
⑤  用語はそれぞれ学会で決められたもの，又は日本工業規格
（JIS）の標準用語を用いる．また付録Ⅱ用字例も参考とする
こと．

⑥  単位は，国際単位すなわちSI（Systeme International d’Unites）
による．単位記号については，それぞれの学会で制定した
もの，又は JISZ8202（1974），前述の SI，若しくはDIN1304 
Allgemeine Formelzeichen（1968）を参照する．

⑦　参考文献の表記
（1） 文献の本文の引用箇所に，右肩 1）・2）・5）・～ 8）のように

片カッコを付して番号を記載する．
（2）表記は番号順に列記すること．

日本大学理工学部理工学研究所研究ジャーナル執筆要項
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⑧　記述上の注意
（1） 文章は文章的口語体とし，特に欧文又はカタカナ書きを

必要とする部分以外は，漢字・かな（ひらがな）まじり書
きとする．

（2） 漢字は常用漢字のみを使用するものとするが，常用漢字
であっても表外音訓は使用しない．ただし，文脈上どう
しても常用漢字以外の漢字を使用しなければならない場
合は，ルビをふるものとする．

（3） かなは，新かなづかいによる．ただし，外来語はカタカ
ナ書きとする．

５　参考文献の体裁
①　 文献の番号は、1 論文ごとに通し番号とし，片カッコを付し
て番号を記載する．

②　 同一の著者が同年に複数の著書又は論文を発表している場
合，文献は，発行の古い順から表記する .

③　邦文文献の表記
　・ （論文の場合）：著者名（発行年）：“論文名”，書物名又は
雑誌名，巻数，号数，ページ数．

　　（例）
　　 1）加鳥 裕明 （2002）：“圧電積層平板の有限要素解析”，
日本機械学会論文集 Ａ編，第68巻，第666号，pp.189-195.

　・（単行本の場合）：著者名（発行年）：書物名，発行所．
　　（例）
　　2）山内 鴻廣隆 （2003）：環境の倫理学，丸善株式会社．

④　欧文文献の表記
（1）著者名は，単著の場合は，苗字，名前のイニシャル．

（2） 著者名が複数名の場合は，1番目の著者の苗字，名前の
イニシャル．，２番目の著者のイニシャル . 苗字 and 最後
の著者のイニシャル．苗字（苗字の後には，ピリオドなし）

　・ （論文の場合）：著者名（発行年）：“論文名”，書物名又は
雑誌名（イタリック）， 巻数，号数，ページ数．

　　（例）
　　1） Craig, J. (1999) : “Weight Estimates and Control”, in G. 

A. Khoury and J. D. Gillett (eds.), Airship Technology, 
Cambridge, Cambridge University Press, pp.235-271.

　　2） Potvin, J., G. peek and B. Brocato (2003) : “New Model 
of Decelerating Bluff-Body Drag”, Journal of Aircraft， 
Vol.40， No.2， pp370-377.

　・ （単行本の場合）: 著者名 （発行年）：書物名，発行地，発
行所．

　　（例）
　　3） McRuer, D., I. Ashkenas and D. Graham (1973) : 

Aircraft Dynamics and Automatic Control, Princeton, 
Princeton University Press.

　・ （WWWの場合）：ブラウザー名（発行年）：書物名， 
www アドレス．

　　（例）
　　4） Selig, M. S. (1998) : “UIUC Airfoil Coordinates Data-

base”, UIUC Airfoil Date Site, URL : http://www.ae.
illinois.edu/m-selig

⑤　本研究ジャーナルの欧文表記の略称
　J. Res. Inst. Sci. Tech., Nihon Univ.
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